University of Massachusetts Amherst

Search Google Appliance


Research Areas

In the Biomedical and Healthcare Engineering group, we improve health through advancements in bioengineering and biomechanical design, and through operational and human factors-based improvements to the way healthcare is delivered.

Researchers study the theory and implementation of solutions to systems level problems in wireless communications, communication and computer networks, and complex dynamical systems. The Wireless Communication Center is involved in applications such as personal communications systems, wireless local loop telephony, wireless local area networks, local multipoint distribution systems, wireless multimedia distribution, and radio frequency identification.

Research topics include reconfigurable computing (FPGA) circuits, architectures, and applications such as: CAD for synthesis and verification; VLSI for signal processing, cryptography, security, and low-power design techniques. As part of a campus-wide initiative in cyber-security, the department conducts research in embedded security including: lightweight implementation of security and privacy primitives; analysis and countermeasures of existing and proposed systems; test-bed deployment of novel systems.


Based on microwave engineering principles, complex, integrated, systems are designed, prototyped, and deployed for the remote sensing of geophysical processes. Large-scale research activities include three centers: the National Science Foundation Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere, which comprises one of the strongest academic groups in radar meteorology; the Microwave Remote Sensing Laboratory, which is one of the nation’s leading university research laboratories in microwave remote sensing of the environment; and the Center for Advanced Sensor and Communication Antennas, a leader in developing antenna technology for national defense, air traffic control, homeland security, and other needs.

The materials group at UMass Amherst is composed of two labs, the Computational Nanomaterials Laboratory and the Materials and Processes Laboratory. The Computational Nanomaterials Laboratory is a young research group lead by Ashwin Ramasubramaniam, with overarching interests that lie in using computational methods to probe materials at length scales ranging from the nano- to macroscale. This lab's primary tools are density functional theory, empirical potential methods, and continuum mechanics-based models (with the occasional paper-and-pencil theory too). The Materials and Processes Laboratory, headed by Dr. Robert Hyers, conducts research in the design and control of the processes that lead to the required structure or properties in materials. This lab uses mathematical modeling to identify and quantify the effect of different process parameters on the structure and properties of materials, and measure the thermophysical properties that are used in the models.

In the Dynamic Systems and Control group, we focus on modeling and control design of complex and multidisciplinary systems. Examples of application areas are wind energy, wearable robotics, physiological systems, and machine diagnostics.

Energy is an important and exciting topic not only in the MIE department, but at UMass Amherst more generally. We contribute to this important national priority through our work on wind energy, energy efficiency, and energy economics and policy. We have the nation’s foremost graduate wind energy research program, developing cutting edge research solutions to issues ranging from turbine dynamics and controls to wind resource assessment. We approach energy efficiency and energy technology R&D policy from multiple perspectives, combining deep technological knowledge in thermodynamics, mechanical design, and operations research, with an understanding of the economic, social, political, and environmental drivers that are key to effecting changes on the ground.

In the design group, our labs conduct research in engineering analysis models and ontologies, finite element analysis models of biological and biomechanical systems, the development of pedagogical tools for supporting engineering education and mechatronics and robotics research focusing on powered exoskeletons and intelligent prosthetics. We use industry standard computer software packages. We also strongly encourage innovative research through our "Partnerships for Innovation Program."

The manufacturing program at the University of Massachusetts Amherst Mechnical Engineering program is centered around the Injection Molding Lab. This lab is involved in numerous research topics involving injection molding. The research work is both numerical and experimental. Typical research area ranges from optimization of injection molding process, minimization of birefringence and residual stress, processing of biodegradable nanocomposite, application of rapid thermal response molding, micro injection molding. Most of the research work is carried out in close coordination with industries in an effort to solve industrial problems.

In the Thermofluids Group, we create models of fluid flow to help produce cleaner power, conserve energy, and understand structural instability. We also make measurements using advanced optics to interrogate complex fluids and nano-particle suspensions. Our research employs some of the world's largest computers in order to simulate the complex flows occurring in nature and engineered systems. We combine these simulations with laser-based experimental diagnostics from our experimental laboratories to reveal comprehensive images of velocity, pressure, and temperature.

In the Human Factors Group, we design products, interfaces, and systems that make peoples’ lives more safe, healthy, enjoyable and productive. We use a state-of-the-art driving simulator to study the effects of in-vehicle technologies on driver performance and collaborate with physicians and nurses to design information systems that help care providers co-manage patients’ chronic diseases. By designing systems that account for how people see, hear, think, and physically function, our research is leading to transportation and healthcare systems that save lives and money.

The Systems Engineering Group, consists of two separate labs: the Dynamic Facilities Layout and Simulation Modeling Laboratory and the Supply Chain Management Group. The Dynamic Facilities Layout and Simulation Modeling Laboratory conducts research in the following areas topological network design, facility layout and location, stochastic network design and analysis, Steiner minimal Trees in 3-dimensions, and state dependent queueing network analysis and finite buffer queueing network models. The laboratory has carried out many and varied projects for manufacturing and service industries in and around Massachusetts, and J. McGregor Smith is a co-author of the textbook "Facilities, Planning, and Design." Within the broad and rapidly evolving field of Supply Chain Management the Supply Chain Management Group headed by Professor Ana Muriel, focuses on analyzing and modeling the coordination of production, inventory, distribution and pricing policies of the supply network.