The University of Massachusetts Amherst
University of Massachusetts Amherst

Search Google Appliance


Undergraduate Research & Independent Study Topics

Participation in research can be a very rewarding component of an undergraduate engineering program. Motivated students can earn credit and satisfy some elective degree requirements by conducting independent study or thesis research with a supervising faculty member. Alternatively, students can be paid to conduct research, for example as part of a summer Research Experience for Undergraduates (REU) program at UMass or at another university.

Most undergraduate research projects are “arranged” by the student who meets with faculty to discuss research interests and needs. Students often consult faculty web pages, for overviews of faculty research interests and then arrange to meet prospective advisors. Most faculty members welcome undergraduate researchers to their labs and many can create undergraduate research projects related to their own research which reflect student interests and capabilities. Other projects may be more clearly defined in advance by faculty members, may derive from other projects or might reflect a new idea which a student wishes to explore. Descriptions of some of the more well defined research projects follow. Students interested in any of these projects or in other research topics are encouraged to contact the associated faculty members.

Professor Erin Baker: My research is on energy technology policy, especially related to energy and the environment. The methods are mathematical and computational decision modeling. Examples of current honors topics include projects evaluating the sustainability of the New England electric grid, Mexico’s pathways to achieving their climate goals, and Evaluating energy technology Research and Development portfolios in the face of climate change.

Professor Steve de Bruyn Kops: I study fluid turbulence at a very fundamental level.  Fundamental science, not engineering. I can work with students who have some appreciation for how to move massive amounts of data through a computer (files larger than the hard drive on a laptop).  Knowledge of python and C++ is good.  Excel and Matlab are not adequate. In particular I am looking for a student with these computer skills and an interest in learning something about artificial intelligence / data mining / big data.

Professor Xian Du: I am very interested in the supervision of senior students. Following are my research areas (please also refer to

1. Roll to Roll Flexible Electronics Printing
2. Intelligent Vision
3. Medical Device Realization

Specific projects (I would like to meet the students to discuss the details)

  • The design, realization, control and scale up of Roll to Roll Print Machines: You will work with me and my Ph.D. students who have rich industrial experience, and my industrial collaborators in the project. You will learn both hand-on skills in design and programming, many interesting research directions in the manufacturing of flexible electronics. This project will be good for students who are interested in precision machine design, control, and manufacturing.
  • Machine vision, image processing, machine learning, and data mining for nano-manufacturing, or medical devices. The data can be from MRI, high speed high resolution optical and NIR camera, or microscope. You will learn the how to apply AI to the above areas. You also will learn how to solve fundamental problems in setup, calibration, and using of these imaging devices. You have chance to work with both my industrial and hospital collaborators. This project will be good for students who are interested in AI applications and discovery of novel AI computations.

Professor Chaitra Gopalappa: My research area and previous work can be found here Students interested in doing a CHC thesis or independent study should contact me at to set up an appointment to discuss specific projects of interest. Students can expect to use one or more of stochastic processes, optimization, simulation, computational modeling, and data analytics. Students can expect to work in the ‘broad’ area of disease prevention and control, though the methodologies can be transferable to other areas.

Professor Juan Jiménez: The research goal of the Jiménez laboratory at the University of Massachusetts – Amherst is to elucidate the fluid flow characteristics and fluid flow-dependent biomolecular pathways relevant to diseases and processes in the body, by integrating fluid dynamic engineering into cellular and molecular mechanisms important in medicine. Our research focuses on experimental cardiovascular biomedicine; specifically, addressing the interaction of flow in the blood vasculature and lymphatic system with the endothelium. Furthermore, we also work in the area of biomedical implantable devices like stents. Active areas of research are:

  1. Atherosclerosis & Stents: Elucidating the role of fluid flow on endothelial cell migration by investigating cell motility, reactive oxygen species and gene expression.
  2. Cerebral Aneurysms & Stroke: Recreating the fluid flow environment present in the cerebral vasculature to identify pro-inflammatory endothelial cell gene expression.
  3. Vascular Biology: In-vitro models of disease and endothelial cell phenotype.

Professor Sundar Krishnamurty: Our Center for eDesign currently has five undergraduate students in our research team. Broadly speaking, they are working in the areas of 1) additive manufacturing; 2) materials characterization, and 3) medical device design. It is likely we will continue to look for undergraduates in these areas this summer and next year as well.

Professor Matt Lackner: I have two potential projects in the area of wind energy. 1 - using kites to generate off-grid power. 2 - using fixed wings to reduce wake losses in wind farms. Overall area – offshore wind energy; topics – turbine design and testing

Professor Jenna Marquard: It’s hard to forecast specific projects, but I would be happy to oversee projects we will certainly have going on related to:

  1. Capturing and analyzing how physicians, nurses, and patients search for and use health information
  2. Creating and evaluating visualizations of health information

Professor Yahya Modarres-Sadeghi: I always have projects for undergraduate students: General Fluid-Structure Interactions (FSI) problems, mainly experimental, with specific problems being those in which the students conduct experiments in the water tunnel or wind tunnel for either fundamental FSI problems, fish propulsion, wind energy related projects, or our bat deterrent device. I also have projects on biomedical FSI.

Professor Shannon Roberts:  I’m interested in having undergraduate students do projects in the Human Performance Lab (HPL). More information about the lab can be found here: In the HPL, the areas of research are: Human Factors, Transportation Engineering, or Industrial Engineering. Students can work on projects that involve the driving simulator or the virtual reality headsets. For example, one Honors student will be doing an experiment on the driving simulator to study the effect of music on driving performance. Students can also work on projects that involve the analysis of data that has already been collected. For example, an undergraduate student from Smith College analyzed data that was collected over the span of 30+ years to identify factors that determine changes in driving behavior.

Professor Jonathan Rothstein: I am always willing to supervise experimental fluid dynamics projects.  The list of possible projects is long and I usually have 10 or so that I sketch out for any student who is interested in working with me.  I let them pick out the one that they like best.

Professor Krish Thiagarajan Sharman: I would be interested in working with one or two honors students in the following topics:

1. Water wave generator for a laboratory - we will use mathematical formulations to model a wave generator in a laboratory. Using Matlab, we will examine the optimum shape of the generator to produce clean noise-free waves.
2. Open source simulation tools for modeling fluid flows - we will use the software OpenFoam to model flow through channels and elbows. We will evaluate the turbulence and uniformity levels and find ways of smoothing the flow.

Professor Yubing Sun: Potential projects for undergraduate honors research include : 1) using microfluidic devices to study the mechanotransduction in epithelial cells; 2) using engineered hydrogels and pluripotent stem cells to model early neural development; 3)  Imaging analysis using Matlab to track cell migration and proliferation.

Professor Frank Sup: I am on sabbatical for the 2018-19 academic year and won’t be available to meet with students for interviews. Students interested in projects for 2019-20 should contact me via email. I am looking for students interested in the areas of:

1. Robotic design
2. Biomechanics of human locomotion
3. Collaborative human-robot systems

Professor Yanfei Xu: Xu Research Group at UMass Amherst
We are looking for like minded scientists and engineers with synergistic research interests to work together on  multifunctional polymers, integrated devices and systems, and advanced manufacturing.
Applicants should send cover letter and curriculum vitae through email to