University of Massachusetts Amherst

Search Google Appliance


Research Laboratories

Biofluids & Vascular Biology Laboratory
Center for Energy Efficiency and Renewable Energy

The University of Massachusetts Center for Energy Efficiency and Renewable Energy (CEERE), founded in 1997, is a national leader in industrial energy efficiency and combined heat and power. Under the leadership of Research Assistant Professor Beka Kosanovic, we offer valuable training and research experience for graduate and undergraduate engineering students, while providing technical assistance at no cost to industrial, commercial and municipal clients. We have worked with more than 800 facilities around the northeast, helping them to identify and implement cost-effective measures that reduce their operating costs, environmental impacts and greenhouse gas emissions. Our research has informed energy policy and program development, and our graduates have gone on to found energy consulting companies and work for top energy efficiency programs.
Learn more at our website

Computational Nanomaterials Laboratory

Welcome to the Computational Nanomaterials Laboratory at UMass Amherst. We are a young research group lead by Ashwin Ramasubramaniam, Assistant Professor in Mechanical and Industrial Engineering and Adjunct Faculty in Chemical Engineering. Our group members come from diverse backgrounds, but our overarching interests lie in using computational methods to probe materials at length scales ranging from the nano- to macroscale. Our primary tools are density functional theory, empirical potential methods, and continuum mechanics-based models (with the occasional paper-and-pencil theory too). Some of our recent and past activities are...Read More

Control in Biomedical Systems

Research topics for the Control in Biomedical Systems Lab include:

  • Math models of the human thyroid.
  • Optimal dosing of radioactive iodine in Graves’ disease.
  • Pharmacokinetic/pharmacodynamics model of erythropoiesis.
  • Design of anemia management protocols in end-stage kidney disease.

Visit our website for more info!

Decision Making and Behavior Lab

The Decision-Making and Behavior Lab seeks to understand how we can improve individuals' decision-making, when the decision maker must understand how complex, uncertain events unfold over time:

  • How can we capture complex human-in-the-loop processes?
  • How can we visualize complex process information?
  • How can we present visual analytical information to decision makers?
  • How do we know if the information has improved decision-making?

The majority of our work focuses on healthcare decision-making...Read More

Dynamic Facilities Layout and Simulation Modeling Lab

Our laboratory conducts research in the following areas

  • topological network design
  • facility layout and location
  • stochastic network design and analysis
  • Steiner minimal Trees in 3-dimensions
  • state dependent queueing network analysis and finite buffer queueing network models

Real world applications of our research include

  • the design and layout of manufacturing plants, health care facilities, and many other production and service oriented systems
  • analysis of routing in large transportation networks
  • modeling and evaluation of building and vehicular evacuation in case of emergencies
e-Design Center

The Center for e-Design is an NSF supported Industry/University Cooperative Research Center involving a number of high technology companies such as Raytheon, PTC, Vistagy, and ANSYS, as well as several universities, including Virginia Tech, University of Central Florida, Carnegie Mellon University, University of Buffalo, Brigham Young University, and Wayne State University. The mission of the Center is to serve as a nucleus of excellence for the creation and dissemination of a systematic body of knowledge in intelligent e-design and product realization. Research at UMass-Amherst is focused on development of new design paradigms and processes, with particular emphasis on engineering knowledge modeling and development of ontologies to support e-Design.

E3: Energy, Environment, and Economic Decision Making Lab

The underlying focus of our research efforts is the application of operations research methods to environmental and energy economics, and policy. Professor Baker's current research program revolves around how uncertainty impacts global climate change policy in a strategic environment.

Fluid Structure Interactions Laboratory

We work on various aspects of Fluid-Structure Interactions, Nonlinear Dynamics, and Biomimetics. View current research projects here.

Human Performance Lab

The Arbella Insurance Human Performance Laboratory (HPL) is a multi-disciplinary research facility at the University of Massachusetts in Amherst, based in the Department of Mechanical and Industrial Engineering. Since the HPL’s founding in the 1980s, the lab’s research has focused on driver behavior and driver safety, and this research has contributed to the understanding of driving, and the identification of factors that:

  • increase the crash risk of novice and older drivers
  • impact the effectiveness of traffic signs, signals, and pavement markings
  • improve the interface of in-vehicle equipment such as forward collision warning systems, back over collision warning systems, and music retrieval systems, and
  • influence drivers’ understanding of advanced parking management systems, advanced traveler information systems, and dynamic message signs

The HPL has created PC-based programs to train drivers to anticipate potential roadway hazards, and to maintain their attention on the forward roadway. The lab’s driving research is conducted using two state-of-the-art driving simulators, and simulator software, and equipment such as eye trackers, head trackers, and portable camera systems that can be used both in the lab and in the field....Read More

Injection Molding Lab

The Injection molding lab in University of Massachusetts, Amherst is involved in numerous research topics involving injection molding. The research work is both numerical and experimental. Typical research area ranges from optimization of injection molding process, minimization of birefringence and residual stress,  processing of biodegradable nanocomposite,  application of rapid thermal response molding, micro injection molding. Most of the research work is carried out in close coordination with industries in an effort to solve industrial problems.

Laboratory for Multiscale Bioengineering and Mechanobiology

Our research applies and integrates fundamental engineering principles, such as manufacturing, biomechanics, materials science, and micro/nanoengineering, to understand and harness the mechanobiology of stem cells for modeling currently incurable human diseases and for applications in regenerative medicine. Current research interests include:

  • Stem cell bioengineering
  • System mechanobiology
  • Microengineering
  • Active biomaterials
  • Lab-on-chip
  • Tissue biomechanics
Lee Nano Engineering Laboratory

Lee Nano-engineering Lab at UMass Amherst focuses on the rational design of various functional materials including metamaterials with emphasis on energy, defense, and bio applications through 2D/3D nano-structuring of polymers, metals, ceramics, and more. Our quest is driven by the acknowledgement that future material innovation will rely on the development of novel materials based on tailored thermal, mechanical, and photonic responses of materials.

Associated Faculty: Jae-Hwang Lee

Lynch Research Group

The current standard of care for bone metastasis is therapies targeting the cells that degrade bone. These cells are directed by cancer cells to degrade bone in order to release pro-tumorigenic growth factors stored within the skeletal extracellular matrix. These therapies are not curative and do not halt metastasis-mediated bone degradation, indicating additional factors contribute to bone degradation. My research program focuses on the skeletal mechanical environment and its regulation of cancer. Specifically, I will investigate 1) the skeleton’s mechanical environment and its regulation of the remodeling process, and 2) the role of osteoblastic cells, which comprise the principal sensor and effector cells of mechanical cues, in metastatic processes. My long-term goal is to identify novel therapeutic targets for treating and preventing bone metastases as well as cancer-associated reductions in bone strength. My experimental approach uses novel in vivo and in vitro mechanical loading model systems to correlate cellular function with cancer pathogenesis, tissue-level changes in tumor burden, and skeletal tissue strength.

Materials and Processes Lab

Materials processing, the basis of materials engineering, is the relationship among structure, properties, and processing: any one determines the other two. Our research is on the design and control of the processes that lead to the required structure or properties in materials. We use mathematical modeling to identify and quantify the effect of different process parameters on the structure and properties of materials, and measure the thermophysical properties that are used in the models...Read More

Mechatronics and Robotics Research Laboratory

In the MRRL our research focuses on developing human-centered robotic technologies for augmenting human gait and balance and exploring physical human-machine interfaces. The 1000 sq. ft. of lab space is dedicated to the fabrication and evaluation of physically interactive mechatronic systems.

Multiphase Flow Simulation Lab

Power is fundamental to the existence of modern society. Without power, you couldn't be reading this web page, for example. However, the environmental consequences of our current methods of power generation are unsustainable. Our lab seeks to improve the performance and reduce the emissions of modern power systems by better understanding of the fuel/air mixing.

The research of the Multiphase Flow Simulation Lab include sprays, cavitation, and other multiphase flows. These studies combine the intellectual challenge of multiple phenomena interacting at multiple scales, and provide the long-term benefits to society of cleaner and more efficient power. For diesel and jet engines, the spray quality has a tremendous impact on the emissions. We also simulate sprays in rockets, where we have great difficulty predicting and controlling the combustion process.

Read more on our website


The Nanoscale Interfaces, Transport, and Energy (NITE) Laboratory evaluates materials for energy transduction applications via direct, in-situ observation of local responses along critical heterophase interfaces in the operating regime.

Non-Newtownian Fluid Dynamics Lab

The Non-Newtownian Fluid Dynamics Lab is actively involved in research in a number of different areas including: the dynamics of complex fluids; laminar and turbulent drag redution; the development and utilization of superhydrophobic surfaces; shear and extensional rheology of a number of different complex fluids; non-Newtonian fluid dynamics; microfluidics; nanotechnology; non-isothermal flows; hydrodynamic stability; and polymer processing. On our lab website, you will find a number of short examples of active research along with links to the corresponding publications and graduate students responsible for the work.

Operations Research for Disease Prediction, Prevention, and Control

Disease — a threat that is common to all human beings across the globe and across generations. Prediction of diseases is a tough problem because it is the outcome of a complex dynamical system that consists of interactions between multiple factors related to epidemiological, social, economical, environmental, population mobility, demographical, and individual behavioral and lifestyle. Disease prevention and intervention decisions, and subsequently resource allocation, at the national and global levels thus need to be based on evaluations of the impact of alternative decisions under this complex dynamical context. Our lab works on development of new methodologies and computational models for simulating the dynamics of disease incidence and spread for purposes of disease prediction, prevention, and control.

Operations Research in Health Care

Our primary research interests are broadly in operations research applied to healthcare delivery. Some examples: I've worked on planning and scheduling of surgical suites; designing primary care physician panels to maximize timeliness and patient-physician continuity; and optimization of prostate cancer screening decisions. We have also recently begun looking at improving emergency room operations. In addressing these problems, we collaborate with a diverse set of...Read More

Process Automation Lab

The Process Automation Laboratory at the University of Massachusetts Amherst focuses on development of general solutions that can cope with process uncertainty. Areas of concentration are Simulation Tuning, Fault Diagnosis and Manufacturing Automation. Among the products of this laboratory are the pattern classifying fault diagnostic method Multi-Valued Influence Matrix (MVIM) and the Structure-Based Connectionist Network (SBCN) for fault diagnosis of helicopter gearboxes. The MVIM method has been applied to tool breakage detection in turning (in collaboration with GE Corporate Research) as well as fault diagnosis of helicopter gearboxes (in collaboration with NASA Lewis and Sikorsky Aircraft). This laboratory has also contributed to manufacturing automation....Read More

Supply Chain Management

"Supply Chain Management takes a holistic approach towards managing the flow of material and information throughout the supply network - including different tiers of suppliers, manufacturers, warehouses and stores - in order to maximize system-wide profits and create customer value."

Theoretical and Computational Fluid Dynamics Lab

The Theoretical and Computational Fluid Dynamics Laboratory is dedicated to the development of practical and generally applicable tools for the prediction of complex and often chaotic fluid flows.

Research at the Lab is focused on the entire CFD food chain from hardware and software to algorithms and turbulence models.  Understanding in detail how the computational, mathematical, and physical problems of CFD interact is the key to designing lasting CFD solutions.

Read more on our website

Turbulence Simulation Laboratory

To study the details of a turbulent flow, it is sometimes more informative to accurately simulate the flow with a computer than to try to observe it in the laboratory. Direct numerical simulation involves the numerical solution of the equations that govern fluid flows.  It is a research tool that provides us with an extremely detailed description of the flow field.  Our lab uses these techniques to study various flows...Read More

Wind Energy Center

The University of Massachusetts Wind Energy Center is a leading institution in wind energy engineering nationally and internationally. Since 1972 the Center has worked diligently to maintain and enhance its important wind energy education programs and research activities. This website will familiarize you with the breadth and depth of that work.

We invite you to learn and grow with us in this very exciting time for wind energy. The stakes have never been higher.