Appendix S1. Definitions of Acronyms

3rdG.
ccs:
CDF:.
ChemL:
DICE:
FR:
GCAM:
GDP:
HTR:.
TAM:
Inorg:
LWR:.
MAC:.
Oryg:
PostC:
PreC"

3rd Generation Technologies
Carbon Capture and Storage
Cumulative Distribution Function
Chemical Looping

Dynamic Integrated Model of Climate and the Economy
Fast Burner Reactors

Global Change Assessment Model
Gross Domestic Product

High Temperature Reactors
Integrated Assessment Model
Inorganic Solar Cells

Light Water Reactors

Marginal Abatement Curve
Organic Solar Cells
Post-combustion Carbon Capture
Pre-Combustion Carbon Capture



Appendix S2. Definitions of Variables and Parameters

Variables

Parameters
Ai .
At :
by:

. generic representation for cost of emissions abatement

cost of emissions abatement in the reduced form R&D model
cost of climate damages in the reduced form R&D model
cost of emissions abatement in the DICE model

cost of climate damages in the DICE model

. total carbon emissions in periad
. representative function modeling the constraint set fagest, s = N, L
: representative function linking greenhouse gas emissmasnospheric temperature

to the carbon cycle

. shift effect in the marginal abatement curve due to teabgiiohl success
. representative function modeling the constrairfor scenariav

. capital stock in period

. investment in traditional capital in periad

: consumption of goods/services in period

:social utility in periodt

. social utility in stages, s= N, L

1 if project; of technologyi is funded at levek in the reduced form R&D model,
0 otherwise

. generic vector representing all decision variables atfen abatement decisions

in stages, s= N, L
generic vector representing all decision variables dten abatement decisions

: net output of goods/services in peribd
: unadjusted output in periad
. vector representing net output of goods/services in siage- N, L

pivot effect in the marginal abatement curve due to succetechnology:

. level of emissions abatement in peribd

: vector representing emissions abatement decisions ia stag= NV, L

. functional representing cost of emissions abatement teftdnical change
: atmospheric temperature in period

: vector representing atmospheric temperature in stage- N, L

;- investment in technology categoiry

vector representing investment decisions in technotogie

stochastic entity representing the returns function fonte@logy category
level of total factor productivity in period

representative parameter modeling the right hand siderstecainty) for
scenariauv

: representative vector modeling the right hand sides oftcainss for stage,

s=N,L
R&D budget

: maximum cost of abatement based on the cost of a backstapaiedly in

periodt

: emissions from deforestation in period
.. required investment for projegtof technology categoryat levelk in the

reduced form R&D model



: population and labor input in periad

. probability of scenario

: degree of policy participation in periad

: utility discount factor for period

. ratio of uncontrolled emissions to output in period

. stochastic parameter modeling the magnitude of climateedges in the reduced

form R&D model

. calculated pivot effect in the marginal abatement curve tdusuccess in projegt

in technologyi

. elasticity of marginal utility of consumption

. elasticity of output with respect to capital

:cost function exponent set to 2.8 in DICE

: opportunity cost parameter

: stochastic parameter modeling the magnitude of climateadas
: rate of depreciation of capital



Appendix S3. Summary of Expert Elicitation Results

. NPV of |5 obability
Technology Project Funding

(000.000) of success

g Pre-combustion $39 2.7%
g Carbon Capture $154 11.0%
f (Pre C) $386 22.3%
g ~ o . $19 8.0%
“5; é ¢ he’?gﬁ}ﬁ‘gpmg $38 29.5%
& $56 42.0%
g Post-combustion $52 59.0%
£ Carbon Capture $224 70.0%
© (Post C) $519 78.5%

Table S3.1 Summary of expert elicitation results for the CCS technology (Baker et al. 2009b).

NPV of ..

. . Probability

Technology Project Funding of success
(000,000) of success
Light Water React S173 21.3%

ght Walter Reacltors
8 33 .89
(LWR) $260 33.8%
$346 60.0%
.39
$772 0.3%
Hich T 1.2%
igh Temperature

17.0%
Reaciors $1,544 —
5 (HTR) 20.2%
s §3.089 |2t
< 40.3%
o
$1.158 0.1%
7.5%

ner Re - o
Fast Burner Reactors $4.633 0.5%
(FR) 32.5%

16.3%
$15,443 -
60.0%

Table S3.2  Summary of expert elicitation results for the nuclear technology (Baker et al. 2008).

NPV of .
. . Probability
Technology Project Funding £ success
(000,000) | "
0.0%
$116 -
Organic Solar Cells 13.0%
(Org 3.99
¢ $830 o
' 28.7%
§ Inorganic Solar Cells $39 26.7%
(Inorg) $77 44.3%
3rd Generation

Technologies $386 2.0%

(3rd G)

Table S3.3 Summary of expert elicitation results for the solar technology (Baker et al. 2009a).



Different research areas in each technology are listeceitPttoject’ column in the elicitation sum-
mary tables. The investment amount for each project can tweeadf multiple potential levels. These
different investment levels are listed under the ‘NPV of &g’ column in the tables, where NPV
refers to the net present value calculated at an interesof&i%. Each project is also associated with
specific endpoints or targets to be assessed, such as a ffigiemey level, which define ‘success’ for
that project. The specific probabilities of success foredéht investment levels of each project reflect
an aggregation of the individual experts’ judgments, amdséwown in the last column of the tables.
Note that for some of the technologies, two levels of sucees® defined (representing lower and
higher goals such as 15% versus 31% efficiency), and therdierfunding amounts have two rows

associated with them.



Appendix S4. Description of Inapplicability of Other Elici tation Data

We note that while other elicitation data exists on the thesfinologies we consider, they are not
applicable to the type of R&D portfolio analysis studied lmistpaper. For example, in some of the
other studies the subtechnologies or projects in each tdmipp are not differentiated at all (National
Research Council 2007, Anadon et al. 2011a, Chan et al. 2@hlle in one study only one project
is considered (Rao et al. 2006). In a few of the elicitatieesh expert evaluated the project they
thought was the most promising project (Curtright et al.208nadon et al. 2011a, Chan et al. 2011,
Bosetti et al. 2012). Such data would not work very well foremeral R&D analysis, as it would
result in an increased level of bias in the models due to ngtesting over multiple experts. In
addition, except for Anadon et al. (2011a) and Chan et alLl1p0all elicitations assume a single
funding level for the technologies studied, and none of tivestude project cost estimates as part of
the elicitations. Hence, the expert elicitation data usealir analysis represents the most appropriate

currently available data for energy technology R&D portgolicy analysis.



Appendix S5. Description of Cost of Abatement in DICE

The cost of abatement in DICE is represented pyu,) = Ptl‘eBtuﬁ wheref is setto 2.8 anaPtl‘GBt

is a product of two constants witB, modeling the maximum cost of abatement based on the cost
of a “backstop” technology, anB, representing a possible increase in the costs related tetree

of participation in a given policy. Specifically, this paipation factor reflects the fact that in some
of the policies considered, not all regions participateeiducing emissions, leading to a higher cost
of abatement. Moreover, a backstop technology in this cogedefined as a technology that would

serve as a perfect substitute for exhaustible resources.



Appendix S6. Representative Marginal Abatement Cost Curve

%‘ 300 fg 1200
g 250 g 1000 Baseline
3]
%5 200 // Hg 800 Solar
o [
S 150 —~ € 600 - — -CCSs
£ 2§
& 100 - / 27 3 400 - == == o Nuclear
+ et d - .
@ 50 - ", o 200 e COmbined
Q - & [o]
° o — = ‘ ° o ‘ ‘
0 0. 0.4 0.5 0.7 0.9
Abatement Abatement
(fraction of total emissions) (fraction of total emissions)

Figure S6.1 Representative MACs defining the cost of reducing the carbon emissions by an additional tonne. The two
plots display the impact of technology projects on the baseline MAC for different ranges of abatement

levels.



Appendix S7. Pivot Parameter Values for Individual Technobgy Projects

Technology Project Paf;r\ﬁ:ter
0.050
Organic Solar Cells
g 0.022
a Inorganic Solar Cells 0.022
3rd Generation Technologies 0.050
o © Pre-comb. Carbon Capture 0.346
E5c 2
"c% &g g Chemical Looping 0.380
o @ Post-comb. Carbon Capture 0.319
Light Water Reactors 0.325
. 0.327
S High Temperature Reactors
° 0.111
=
~ 0.332
Fast Burner Reactors
0.115

Table S7.1 Pivot parameter values for individual projects. Multiple parameter values for a project imply that

values may differ based on the level of success.

LetS = U;S; refer to some given combination of successful technologyepts, wheres; denotes
the set of successful projects in technolagy= C'CS, nuclear, solar. The process for deriving the
values ofa; andh () for any given setS was as follows. First, a project pivot parameter, denoted
by «;; was estimated using the generated MACs for each individigegt as listed in the table
above. Second, we make the assumption that, within any oémimi, only the best project (the one
with the greatest impact on the MAC) will impact the econoffigerefore, we define; asa; =
max; {a; : j € S;}. Finally, for every combination of possible technologicatcomes as represented
by the threen;’s for the three technologies, a shift paramétéer) was estimated numerically. For
these values please contact the authors.

Note that the combined solar/nuclear parametes is calculated asa; = 1 —

(1 - anuclear) (1 - asolar)-



Appendix S8. Proofs of Analytical Results
LEMMA 1 (Convexity of equation(18)). The revised output equatiq®8) can be expressed as a

convex inequality constraint.

Proof: Solak and Baker (2012) show that equation (11) in DICE carxpesssed as

1—cp(m)
DD (Tt)

and that the left hand side of this constraint is convex irdiagsion variables for the range of param-

yi <0 (23)

t

eter values used in DICE. This implies that the function iscave in the numeratdr— cp (). Let

scalar functior? : R — R be defined such that

)=~ ! 24)

Hence, equation (18) can be expresseg;as/(o(u, a1, az2)) <0, where

o(pe, ar,a0) =1 — ((1 —0.8a1 —0.92a5)cp (pe) — (0.02 — 0.06cv; + 0.142)ep (0.5) e)]  (25)

Hence for the convexity of (18), it suffices to show théd(u;, a1, az)), i.e. the composition of and
o0 is convex in the decision variables, a4, as.

Note that composition of a function with a scalar convex fiorcis convex if the function is
concave and the extended-value extension of the scalatiduns nonincreasing. Given thdtis
nonincreasing, we need to show th#f.;, .y, «s) is concave. This can be shown by computing the
Hessian of the function, and noting that the Hessian is negs¢midefinite, which we skip the details

for. It follows that (18) has an equivalent convex repreagon.[]

THEOREM 1 (Convexity of the integrated R&D and abatement policy optimzation model).
The stochastic programming formulatig¢fh9)-(22) for the integrated R&D and abatement policy

optimization model is convex with respect to all decisionaldes.

Proof: The result follows from the proof of convexity for the detanmtic DICE model by Solak
and Baker (2012), Lemma 1, and the linearity of constrait®3,((21)-(22), and (36)-(38).]

ProposITION1 (Sufficiency of nonanticipativity in X, k, andw). LetY?, k, uy’, andxy rep-
resent the optimal decision variable values for scenaki@ss? in the integrated R&D and abatement
policy optimization model, where’ is the vector of all other variables. For any,w’ € ), if T¥ =

T, kY =k, anduy = ¢, then there exists an optimal solution whete=x".



Proof: The result can be established by analyzing the impliediogighips in formulation (6)-(10).

We first note that the representative constraints (10) ua/the following three constraints:

me = e, +0.811m% | +0.097m? , vt (26)
fi = 3.8log{m{ +mj,,/1192.8} Vit (27)
Tr=7-1+0.22(f; —1.271_1 — 0.3(17y-1 — 7;_1)) vt (28)
T, =7, 4 +0.05(1_1 — 7, ;) vt (29)

wherem{ andm} are the carbon concentrations in the atmosphere and uppan®yg; is the total
radiative forcing, and, is the ocean temperature in periadThe conditionsr¥ = Y, k¥ = k',
andu® = u¢" have the following implications. First, given the equality= v and the definition of
u, in constraint (7), we get? = o, Similarly, k& = k¢ implies through constraint (9) th#t = 12"
Moreover, due to the equality of variableg [;, andY; in constraint (16) for scenarias andw’,
we note that the conditiop® = 3" must also hold. The last relationship, along with the caadit
kv = k' requires that the following must hold for scenarioandw’:

1-P"()’B, _1+m(ry")’

= 30
=P8, 1+ a(ro) (30)

Clearly, this condition will be satisfied wher = 1 andr = ', implying the equalities® =
¢’ due to constraint (13), and’ = 7' due to constraint (29). Based on this, the relationship in
(28) requires thatf* = £, and in turnm{** = m® due to constraint (27). Finally, equality of
values for variables; and m¢ in constraint (26) results in the condition™* = m™““". Hence, it
follows that there exists an optimal solution where all &hhes that are not explicitly included in the

nonanticipativity constraints are also equalfoandw’. (J



Appendix S9. Reduced Form R&D Model
For the reduced form R&D model, we use the simplistic mod@aier and Solak (2011), where the
authors reduce the economy into two periods and a singleiequé general representation of this

model is as follows:

0 Faz | minf® (cn (). @) + 2D ()] @
S.t. Z Z Z fijnTije < B (32)

d mp <l Vi, j (33)
0<p<i 34)

Tijr € {0,1} Vi, g, k (35)

The reduced form model determines the abatement Jeaeld binary technology selection decisions
z;;, that minimize the expectation of the sum of abatement césts: (1) , &) and damage costs
Dr(1). In this objective function representatian; (1) = bou®* denotes the baseline abatement cost
function used in the reduced-form model, whégeand b; are calibrated parameters. The damage
cost function in the reduced-form model is definedlas 1) = My(Q — Miu)?, whereQ, M, and

M, correspond to specific parameter values. The technologgtsmh decisions are made in the first
period and abatement is performed in the second periodratiération of the uncertain parameters,
which consist of the technical change indicatarand the magnitude of climate change damages, i.e.
Z. The probability distributions over the parametersand thush (o) depend on the R&D projects
that are chosen, while the uncertainty around the magnitudeclimate change damages is exoge-
nous. The indices, j andk represent the technology (CCS, nuclear, and solar), thafgperoject

for a technology and the level of investment, respectivEiye binary decision variables;;, equal0

if there is no investment at funding levelin project; of technologyi, and1 otherwise. The other
decision variable is abatemente [0, 1], i.e. the fraction of emissions reduced below a business-as
usual level. The investment decisions are constrained &yR&D budget5, and by the fact that a
project can be invested in only at one level, whére is the NPV of funding levek for project; of

technologyi, as given in the third column of the tables in Appendix S3.



Appendix S10. Returns Functions for the Solar-Nuclear Techology Category

[Budg.(Smi)]] 77] 346] 423] 539] 925] 1967] 3628] 4014] 4342] 8975] 20171][ Prob.]

0 0 0 0 0 0 0 0 0 0 01| 0.087
0.022 0 0.022| 0.022| 0.022| 0.022| 0.022| 0.022| 0.022| 0.022| 0.022|| 0.089
0.022 0]0.022| 0.022| 0.022| 0.327| 0.327| 0.327| 0.327| 0.327| 0.327|| 0.064
0.022 01]0.022| 0.022| 0.022| 0.131| 0.131| 0.131| 0.131| 0.131| 0.131|| 0.044
0.022 0| 0.34| 0.34| 0.34| 0.34] 0.34| 0.34| 0.34| 0.34| 0.34|| 0.039
0.022| 0.325| 0.325| 0.325| 0.325| 0.325| 0.325| 0.325| 0.325| 0.325| 0.325|| 0.157

0]0.325| 0.325( 0.325| 0.325| 0.325| 0.327| 0.327| 0.327| 0.327| 0.327|| 0.081

0]0.325/0.325| 0.34| 0.34| 0.34| 0.34| 0.34| 0.34| 0.34| 0.34| 0.041
s 0]0.325| 0.34| 0.34] 0.34| 0.34| 0.34| 0.34| 0.34| 0.34| 0.34||0.124

0]0.325| 0.34| 0.34| 0.34] 0.342| 0.342| 0.342| 0.342| 0.342| 0.342|| 0.067
0.022| 0.325| 0.325| 0.325| 0.325| 0.325| 0.325| 0.325| 0.325| 0.325| 0.361|| 0.01
0.022 0]0.022| 0.022| 0.022| 0.022| 0.022| 0.022| 0.022| 0.134| 0.134|| 0.039

0 0 0 0 0(0.111] 0.111| 0.111| 0.111| 0.342| 0.342|| 0.023
0 0 0 0 0] 0.342| 0.342| 0.342| 0.342| 0.342| 0.342|| 0.023
0 0 0 0 0]0.327| 0.342| 0.342| 0.342| 0.342| 0.342|| 0.025
0 0 0 0 0 0] 0.327| 0.361| 0.361| 0.361| 0.361|| 0.028
0 0 0 0 0 0 0 0] 0.342| 0.115| 0.115|| 0.037

0] 0.325| 0.325| 0.022| 0.34| 0.34| 0.34|| 0.022
Table S10.1 Piecewise linear returns functions for solar-nuclear, where the central columns show values of > for

o
o
o
o

discrete levels of investment. Each row, which corresponds to a realization of the function A-, is associated with a

probability given in the far right column.



Appendix S11. Representation of Stochastic Returns Funans

The stochastic returns functions in the integrated R&D anatement policy optimization model
are represented through a piecewise linear structure.derdo include this representation in the
optimization framework, in addition to definirg’ as variables in the model, we define new variables
A >0fori=1,2; we2;andn =0,..., N; wherelV; is the number of vertices or budgets used to
represent the returns functions for technology categowe then include the following constraints

in our formulation:

N;
Y=Y uragn Vi, w (36)
n=1
N;
af = &l (m)A" Vi, w (37)
n=1
N;
> oaer=1 Vi, w (38)
n=0

wherev!” is the budget value for theth vertex. These values correspond to the budgets in the top
rows of Table 3 and Appendix S8. The stochastic param@&tén) in these constraints is the value

of the return parameter? at thenth vertex of the return function. Note that we must requie et
most two adjacends™ can be nonzero for eachandw to ensure that corresponding valuesYyf

and oy lie on one of the straight line segments of the returns fenctHowever, this condition is

satisfied regardless due to the result in Appendix S5 thaimegrated R&D and abatement policy

optimization model is convex.



Appendix S12. Description of the Solution Procedure

Our solution approach to the integrated R&D and abatemelitypoptimization model involves
a Lagrangian decomposition scheme. Note that model (1B)iflinked in scenarios through the
nonanticipativity constraints (21)-(22). By subjectifigese conditions to Lagrangian relaxation, we

form the following Lagrangian

L(x, X, k,u)= Zp ZRtut-l-ZZwa (ZPWTZJ,—T;})

weN t weN 1 w'eN
+ ¢ (Z Pk — kf) +> > (Z P uy — uf) (39)
weN t<b w'eN weN t<b w'eN

where¢?, (¢, ny are the Lagrange multipliers. With a slight abuse of notgtiee letx above denote

all variables other thai(', k, andu. A major advantage of the described formulation of the ntinan
pativity constraints is that when they are relaxed, the aagran (39) can be decomposed by scenarios
for given dual vector®, ¢, andn. Hence, the resulting Lagrangian can be expressed as

L(x, Y, k,u) =Y Ly(x¥, X%k, u®) (40)

we

The corresponding Lagrangian dual problem for problem-(29) is then

min{Z(¢,¢,m) =max{} | Lu(x*, 0 k* u”): (20)} (41)

weQ

Problem (41) is a nonsmooth convex minimization problend ean be solved by subgradient
optimization methods (Hiriart-Urruty and Lemarechal 1p9& each iteration of these methods, the
solution of Z(¢, ¢, n) is required to obtain a subgradient. We note tBa&, ¢, n) is separable, and
reduces to solving¢f2| problems of manageable size, each of which correspondsihgla scenario.
Components of the subgradient vecloare then given by~ , ., p*' T¥ — Y%, > o0 k¢ — k¢,
andy" ., p” ud —uf whereY¥, k¢ anduy are the corresponding optimal solutions to the scenario
subproblems.

We letIV represent the subgradient at iteratigrand propose a modified subgradient algorithm
consisting of a combined step size rule. More specifically,use a weighted combination of the

subgradients from previous iterations in updating the slaghbles, such that:

[V =T 46,1971 4 6,172 (42)



where thej terms represent weights with + 6; + J, = 1. Based on an experimental analysis of con-
vergence rates, as it is the case for most subgradient gdgoiinplementations, we have determined
that the best choices for these weights for the given prolled, = 0.7, 6; = §, = 0.15.

Multiplier updates are then performed using the followitepssize rule:

jt1 j W(Ej _Lj)fj

o(LI— L")+, i
|||

_ _ LI — 1)
: TV J+1 ]_(‘0< = /1Y
o o ¢

¢j+1:¢j_ ; )
[T]]

n

whereyp, p < 2, is a constant that can be modified during the algorithm,enlilandZ’ are upper and
lower bounds on the Lagrangian at iteratigrespectively. The values to be used fowere again
determined through experimental analysis. Note that amydragian dual solution is an upperbound
for the original problem, which can be used in evaluatingvidlee of a given feasible solution.
Despite the improvements in convergence rates throughateneter settings above, the subgra-
dient algorithm implementation is still not efficient endugr quick evaluations of the large number
of policy environments and input configurations that we hewesidered as part of our analysis in
this paper. However, further improvement of the solutioacedure is possible by establishing the
following result about the structure of the optimal investrhdecisions for the given piecewise linear

returns functions.

PROPOSITION2. If \]“"* represent the optimal values for variablag~, then\[“* € {0,1} for
all n, 7 andw, i.e. the optimal investment decision for each technol@ggory: corresponds to a

vertex value in the corresponding piecewise linear retdumgtion.

Proof: The result follows from a marginal analysis. Consider equaf16) as defined for each
scenariav € 2. Given that maximization of the utility in each period imggithe maximization of the
net outputy;’ for that period, it is optimal to increase investmentAyunits as long a€,,[AY] >
m%, whereA?* is the change in the net output value of scenarfor aA; unitincrease in investment
for technology category.

By definition, the marginal returns and costs are the sambeénadngeY; € [v7,v"t!] for all n
due to the linear relationships between investment leveds&. Suppose for somé n andw, 0 <
A < 1, i.e. the optimal investment is not a vertex value implyihgtt? < v; < v!"*!, where
T! = ;. Assuming without loss of generality that the expectedrnstare increasing between vertices

n andn + 1, the optimality conditions imply thak,[A?*] > k£ in the rangeY; € [v,7;]. On



the other hand, this should also hold for the raffges [v;, v/"'] due to the constancy of marginal
returns between verticesandn + 1. Hence, it is possible to increase social utility by incregshe
investment level to the value at vertext 1, which is a contradiction implying that; can not be
optimal. This would require.)** € {0, 1} for all n, ¢ andw.[]

Hence, it is possible to implement an implicit enumeratioocpdure for the investment levels at
the vertices of the piecewise linear returns functions ary solve for the optimal abatement policy
at those implicitly enumerated investments levels. Im@etation of this procedure improves the

overall solution time as the subgradient iterations arg onplemented over the variablesandk for

given investment levels.



Appendix S13. Allocation of Total Investment under Different Optimal Investment
Values

Investments ($ million) Total Inv
CCS Nuclear Solar ($bil)
Pre C| Chem L[ PostC[[ LWR | HTR|[ FR][[Org]lnorg]3rd G
386 56 519 346| 3089| 15443|| 830 77| 386 21.132
386 56 519|| 346 3089 0| 830 77 0 5.303
154 56 519|| 346 3089 0| 830 77 0 5.071
154 56 519 346 | 1544 0 0 77 0 2.696

Table S13.1 Allocation of total investment under different optimal investment values.



Appendix S14. R&D and Riskiness of Outcomes
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Figure S14.1 Cumulative distribution function comparing different R&D policies in the Risk 3 DICE Optimal case.

We consider how investment into R&D impacts the riskinesthefpolicy outcomes. Figure S14.1
shows part of three cumulative distribution functions (GRH he CDFs are for DICE Optimal under
high risk (Risk 3), comparing no R&D, optimal R&D, and full H& The horizontal axis represents
the present value of total costs. Each point on the graplesepts the probability that total costs are
less than or equal to the value on the horizontal axis. Fanei@ the probability that the total cost is
less than $170 trillion, given an optimal investment in R&Dabout 0.98. We only show the far right
of the graph, since there is no visual difference betweethite® cases on the rest of the graph. Note
that society would prefer to be as far left as possible ongraph, and so a higher line is preferred to
a lower line. There is a 5.5% chance that high damages (alBduh2s higher than the mean) realize
in the Risk 3 case. If there is no R&D, then damages in this valsée equal to $194 trillion. With
full or optimal R&D however, damages may be limited, with yabout a 2% chance that damages
are greater than $170 trillion. ThuR&D provides risk reductiorfvisualized as the area between the

darker and the lighter solid curves).
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