
Appendix S1. Definitions of Acronyms

3rdG: 3rd Generation Technologies
CCS: Carbon Capture and Storage
CDF : Cumulative Distribution Function

ChemL: Chemical Looping
DICE: Dynamic Integrated Model of Climate and the Economy

FR: Fast Burner Reactors
GCAM : Global Change Assessment Model
GDP : Gross Domestic Product
HTR: High Temperature Reactors
IAM : Integrated Assessment Model
Inorg: Inorganic Solar Cells
LWR: Light Water Reactors
MAC: Marginal Abatement Curve
Org: Organic Solar Cells

PostC: Post-combustion Carbon Capture
PreC: Pre-Combustion Carbon Capture



Appendix S2. Definitions of Variables and Parameters

Variables
c(µ): generic representation for cost of emissions abatement
cR(µ): cost of emissions abatement in the reduced form R&D model
DR(µ): cost of climate damages in the reduced form R&D model
cD(µt): cost of emissions abatement in the DICE model
DD(τt): cost of climate damages in the DICE model

et : total carbon emissions in periodt
Gs(·) : representative function modeling the constraint set for stages, s=N,L

H(τt−1, et) : representative function linking greenhouse gas emissionsto atmospheric temperature
to the carbon cycle

h(α): shift effect in the marginal abatement curve due to technological success
Jωψ (·): representative function modeling the constraintψ for scenarioω
kt : capital stock in periodt
lt : investment in traditional capital in periodt
ot : consumption of goods/services in periodt
ut : social utility in periodt

Us(·) : social utility in stages, s=N,L
xijk: 1 if projectj of technologyi is funded at levelk in the reduced form R&D model,

0 otherwise
xs: generic vector representing all decision variables otherthan abatement decisions

in stages, s=N,L
x: generic vector representing all decision variables otherthan abatement decisions
yt : net output of goods/services in periodt
ygt : unadjusted output in periodt
ys : vector representing net output of goods/services in stages, s=N,L
αi: pivot effect in the marginal abatement curve due to successin technologyi
µt : level of emissions abatement in periodt
µs : vector representing emissions abatement decisions in stages, s=N,L

Φ(c (µ) ,α): functional representing cost of emissions abatement after technical change
τt : atmospheric temperature in periodt
τs : vector representing atmospheric temperature in stages, s=N,L
Υi: investment in technology categoryi
Υ: vector representing investment decisions in technologies

Parameters
Ai : stochastic entity representing the returns function for technology categoryi
At : level of total factor productivity in periodt
bωψ: representative parameter modeling the right hand side of constraintψ for

scenarioω
bs : representative vector modeling the right hand sides of constraints for stages,

s=N,L
B: R&D budget
Bt : maximum cost of abatement based on the cost of a backstop technology in

periodt
Et : emissions from deforestation in periodt
fijk: required investment for projectj of technology categoryi at levelk in the

reduced form R&D model



Lt : population and labor input in periodt
pω: probability of scenarioω
Pt : degree of policy participation in periodt
Rt : utility discount factor for periodt
St : ratio of uncontrolled emissions to output in periodt
Z: stochastic parameter modeling the magnitude of climate damages in the reduced

form R&D model
αij: calculated pivot effect in the marginal abatement curve due to success in projectj

in technologyi
β : elasticity of marginal utility of consumption
γ : elasticity of output with respect to capital
θ : cost function exponent set to 2.8 in DICE
κ : opportunity cost parameter
π : stochastic parameter modeling the magnitude of climate damages
σ : rate of depreciation of capital



Appendix S3. Summary of Expert Elicitation Results

Table S3.1 Summary of expert elicitation results for the CCS technology (Baker et al. 2009b).

Table S3.2 Summary of expert elicitation results for the nuclear technology (Baker et al. 2008).

S

Table S3.3 Summary of expert elicitation results for the solar technology (Baker et al. 2009a).



Different research areas in each technology are listed in the ‘Project’ column in the elicitation sum-

mary tables. The investment amount for each project can be atone of multiple potential levels. These

different investment levels are listed under the ‘NPV of Funding’ column in the tables, where NPV

refers to the net present value calculated at an interest rate of 5%. Each project is also associated with

specific endpoints or targets to be assessed, such as a given efficiency level, which define ‘success’ for

that project. The specific probabilities of success for different investment levels of each project reflect

an aggregation of the individual experts’ judgments, and are shown in the last column of the tables.

Note that for some of the technologies, two levels of successwere defined (representing lower and

higher goals such as 15% versus 31% efficiency), and therefore the funding amounts have two rows

associated with them.



Appendix S4. Description of Inapplicability of Other Elici tation Data

We note that while other elicitation data exists on the threetechnologies we consider, they are not

applicable to the type of R&D portfolio analysis studied in this paper. For example, in some of the

other studies the subtechnologies or projects in each technology are not differentiated at all (National

Research Council 2007, Anadon et al. 2011a, Chan et al. 2011), while in one study only one project

is considered (Rao et al. 2006). In a few of the elicitations,each expert evaluated the project they

thought was the most promising project (Curtright et al. 2008, Anadon et al. 2011a, Chan et al. 2011,

Bosetti et al. 2012). Such data would not work very well for a general R&D analysis, as it would

result in an increased level of bias in the models due to not aggregating over multiple experts. In

addition, except for Anadon et al. (2011a) and Chan et al. (2011), all elicitations assume a single

funding level for the technologies studied, and none of theminclude project cost estimates as part of

the elicitations. Hence, the expert elicitation data used in our analysis represents the most appropriate

currently available data for energy technology R&D portfolio policy analysis.



Appendix S5. Description of Cost of Abatement in DICE

The cost of abatement in DICE is represented bycD (µt) = P 1−θ
t Btµ

θ
t whereθ is set to 2.8 andP 1−θ

t Bt

is a product of two constants withBt modeling the maximum cost of abatement based on the cost

of a “backstop” technology, andPt representing a possible increase in the costs related to thedegree

of participation in a given policy. Specifically, this participation factor reflects the fact that in some

of the policies considered, not all regions participate in reducing emissions, leading to a higher cost

of abatement. Moreover, a backstop technology in this context is defined as a technology that would

serve as a perfect substitute for exhaustible resources.



Appendix S6. Representative Marginal Abatement Cost Curves
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Figure S6.1 Representative MACs defining the cost of reducing the carbon emissions by an additional tonne. The two

plots display the impact of technology projects on the baseline MAC for different ranges of abatement

levels.



Appendix S7. Pivot Parameter Values for Individual Technology Projects

Technology Project
Pivot

Parameter

3rd Generation  Technologies 0.050

0.327

0.111

0.332

0.115

N
u
cl
ea
r

Light Water Reactors

High Temperature Reactors

Fast Burner Reactors

0.325

C
ar
b
o
n

C
ap
tu
re

an
d

S
to
ra
g
e Pre-comb. Carbon Capture

Chemical Looping

Post-comb. Carbon Capture

0.346

0.380

0.319
S
o
la
r

Organic  Solar Cells 
0.050

0.022

Inorganic Solar Cells 0.022

Table S7.1 Pivot parameter values for individual projects. Multiple parameter values for a project imply that

values may differ based on the level of success.

Let S =∪iSi refer to some given combination of successful technology projects, whereSi denotes

the set of successful projects in technologyi, i=CCS,nuclear, solar. The process for deriving the

values ofαi andh (α) for any given setS was as follows. First, a project pivot parameter, denoted

by αij was estimated using the generated MACs for each individual project as listed in the table

above. Second, we make the assumption that, within any technology i, only the best project (the one

with the greatest impact on the MAC) will impact the economy.Therefore, we defineαi asαi =

maxj {αij : j ∈ Si}. Finally, for every combination of possible technologicaloutcomes as represented

by the threeαi’s for the three technologies, a shift parameterh (α) was estimated numerically. For

these values please contact the authors.

Note that the combined solar/nuclear parameterα2 is calculated as α2 = 1 −

(1−αnuclear) (1−αsolar).



Appendix S8. Proofs of Analytical Results

LEMMA 1 (Convexity of equation(18)). The revised output equation(18) can be expressed as a

convex inequality constraint.

Proof: Solak and Baker (2012) show that equation (11) in DICE can be expressed as

yt−
1− cD (µt)

DD (τt)
ygt ≤ 0 (23)

and that the left hand side of this constraint is convex in thedecision variables for the range of param-

eter values used in DICE. This implies that the function is concave in the numerator1− cD (µt). Let

scalar functionℓ :R→R be defined such that

ℓ(r) =−
r

DD (τt)
ygt (24)

Hence, equation (18) can be expressed asyt+ ℓ(̺(µt, α1, α2))≤ 0, where

̺(µt, α1, α2) = [1− ((1− 0.8α1− 0.92α2)cD (µt)− (0.02− 0.06α1+0.14α2)cD (0.5)µt)] (25)

Hence for the convexity of (18), it suffices to show thatℓ(̺(µt, α1, α2)), i.e. the composition ofℓ and

̺ is convex in the decision variablesµt, α1, α2.

Note that composition of a function with a scalar convex function is convex if the function is

concave and the extended-value extension of the scalar function is nonincreasing. Given thatℓ is

nonincreasing, we need to show that̺(µt, α1, α2) is concave. This can be shown by computing the

Hessian of the function, and noting that the Hessian is negative semidefinite, which we skip the details

for. It follows that (18) has an equivalent convex representation.�

THEOREM 1 (Convexity of the integrated R&D and abatement policy optimization model).

The stochastic programming formulation(19)-(22) for the integrated R&D and abatement policy

optimization model is convex with respect to all decision variables.

Proof: The result follows from the proof of convexity for the deterministic DICE model by Solak

and Baker (2012), Lemma 1, and the linearity of constraints (16), (21)-(22), and (36)-(38).�

PROPOSITION1 (Sufficiency of nonanticipativity in Υ, k, andu). LetΥω
i , kωt , uωt , andxωt rep-

resent the optimal decision variable values for scenariosω ∈Ω in the integrated R&D and abatement

policy optimization model, wherexωt is the vector of all other variables. For anyω,ω′ ∈ Ω, if Υω
i =

Υω′

i , kωt = kω
′

t , anduωt = uω
′

t , then there exists an optimal solution wherex
ω
t = x

ω′

t .



Proof: The result can be established by analyzing the implied relationships in formulation (6)-(10).

We first note that the representative constraints (10) involve the following three constraints:

ma
t = et+0.811ma

t−1+0.097mu
t−1 ∀t (26)

ft = 3.8 log{ma
t +ma

t+1/1192.8} ∀t (27)

τt = τt−1+0.22(ft− 1.27τt−1− 0.3(τt−1− τ t−1)) ∀t (28)

τ t = τ t−1 +0.05(τt−1− τ t−1) ∀t (29)

wherema
t andmu

t are the carbon concentrations in the atmosphere and upper oceans,ft is the total

radiative forcing, andτ t is the ocean temperature in periodt. The conditionsΥω
i = Υω′

i , kωt = kω
′

t ,

anduωt = uω
′

t have the following implications. First, given the equalityuωt = uω
′

t and the definition of

ut in constraint (7), we getoωt = oω
′

t . Similarly,kωt = kω
′

t implies through constraint (9) thatlωt = lω
′

t .

Moreover, due to the equality of variablesot, lt, andΥi in constraint (16) for scenariosω andω′,

we note that the conditionyωt = yω
′

t must also hold. The last relationship, along with the condition

kωt = kω
′

t requires that the following must hold for scenariosω andω′:

1−P 1−θ
t (µω

′

t )
θBt

1−P 1−θ
t (µωt )

θBt

=
1+π(τω

′

t )2

1+π(τωt )
2

(30)

Clearly, this condition will be satisfied whenµωt = µω
′

t andτωt = τω
′

t , implying the equalitieseωt =

eω
′

t due to constraint (13), andτωt = τω
′

t due to constraint (29). Based on this, the relationship in

(28) requires thatfωt = fω
′

t , and in turnma,ω
t = ma,ω′

t due to constraint (27). Finally, equality of

values for variableset andma
t in constraint (26) results in the conditionmu,ω

t = mu,ω′

t . Hence, it

follows that there exists an optimal solution where all variables that are not explicitly included in the

nonanticipativity constraints are also equal forω andω′. �



Appendix S9. Reduced Form R&D Model

For the reduced form R&D model, we use the simplistic model ofBaker and Solak (2011), where the

authors reduce the economy into two periods and a single equation. A general representation of this

model is as follows:

min
xijk:∀i,j,k

Eα,Z

[

min
µ

[Φ (cR (µ) ,α)+ZDR (µ)]

]

(31)

s.t.
∑

i

∑

j

∑

k

fijkxijk ≤B (32)

∑

k

xijk ≤ 1 ∀i, j (33)

0≤ µ≤ 1 (34)

xijk ∈ {0,1} ∀i, j, k (35)

The reduced form model determines the abatement levelµ and binary technology selection decisions

xijk that minimize the expectation of the sum of abatement costsΦ(cR (µ) ,α) and damage costs

DR(µ). In this objective function representation,cR (µ) = b0µ
b1 denotes the baseline abatement cost

function used in the reduced-form model, whereb0 and b1 are calibrated parameters. The damage

cost function in the reduced-form model is defined asDR(µ) =M0(Q−M1µ)
2, whereQ,M0, and

M1 correspond to specific parameter values. The technology selection decisions are made in the first

period and abatement is performed in the second period afterrealization of the uncertain parameters,

which consist of the technical change indicatorsα and the magnitude of climate change damages, i.e.

Z. The probability distributions over the parametersα and thush (α) depend on the R&D projects

that are chosen, while the uncertainty around the magnitudeZ of climate change damages is exoge-

nous. The indicesi, j andk represent the technology (CCS, nuclear, and solar), the specific project

for a technology and the level of investment, respectively.The binary decision variablesxijk equal0

if there is no investment at funding levelk in projectj of technologyi, and1 otherwise. The other

decision variable is abatementµ ∈ [0,1], i.e. the fraction of emissions reduced below a business-as-

usual level. The investment decisions are constrained by the R&D budgetB, and by the fact that a

project can be invested in only at one level, wherefijk is the NPV of funding levelk for projectj of

technologyi, as given in the third column of the tables in Appendix S3.



Appendix S10. Returns Functions for the Solar-Nuclear Technology Category

Budg.($mil) 77 346 423 539 925 1967 3628 4014 4342 8975 20171 Prob.

0 0 0 0 0 0 0 0 0 0 0 0.087
0.022 0 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.089
0.022 0 0.022 0.022 0.022 0.327 0.327 0.327 0.327 0.327 0.327 0.064
0.022 0 0.022 0.022 0.022 0.131 0.131 0.131 0.131 0.131 0.131 0.044
0.022 0 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.039
0.022 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.157

0 0.325 0.325 0.325 0.325 0.325 0.327 0.327 0.327 0.327 0.327 0.081
0 0.325 0.325 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.041

α2 0 0.325 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.124
0 0.325 0.34 0.34 0.34 0.342 0.342 0.342 0.342 0.342 0.342 0.067

0.022 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.361 0.01
0.022 0 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.134 0.134 0.039

0 0 0 0 0 0.111 0.111 0.111 0.111 0.342 0.342 0.023
0 0 0 0 0 0.342 0.342 0.342 0.342 0.342 0.342 0.023
0 0 0 0 0 0.327 0.342 0.342 0.342 0.342 0.342 0.025
0 0 0 0 0 0 0.327 0.361 0.361 0.361 0.361 0.028
0 0 0 0 0 0 0 0 0.342 0.115 0.115 0.037
0 0 0 0 0 0.325 0.325 0.022 0.34 0.34 0.34 0.022

Table S10.1 Piecewise linear returns functions for solar-nuclear, where the central columns show values of α2 for

discrete levels of investment. Each row, which corresponds to a realization of the function A2, is associated with a

probability given in the far right column.



Appendix S11. Representation of Stochastic Returns Functions

The stochastic returns functions in the integrated R&D and abatement policy optimization model

are represented through a piecewise linear structure. In order to include this representation in the

optimization framework, in addition to definingαωi as variables in the model, we define new variables

λωni ≥ 0 for i= 1,2; ω ∈Ω; andn= 0, . . . ,Ni whereNi is the number of vertices or budgets used to

represent the returns functions for technology categoryi. We then include the following constraints

in our formulation:

Υω
i =

Ni
∑

n=1

vni λ
ωn
i ∀i, ω (36)

αωi =

Ni
∑

n=1

α̂ωi (n)λ
ωn
i ∀i, ω (37)

Ni
∑

n=0

λωni = 1 ∀i, ω (38)

wherevni is the budget value for thenth vertex. These values correspond to the budgets in the top

rows of Table 3 and Appendix S8. The stochastic parameterα̂ωi (n) in these constraints is the value

of the return parameterαωi at thenth vertex of the return function. Note that we must require that at

most two adjacentλωni can be nonzero for eachi andω to ensure that corresponding values ofΥω
i

andαωi lie on one of the straight line segments of the returns function. However, this condition is

satisfied regardless due to the result in Appendix S5 that ourintegrated R&D and abatement policy

optimization model is convex.



Appendix S12. Description of the Solution Procedure

Our solution approach to the integrated R&D and abatement policy optimization model involves

a Lagrangian decomposition scheme. Note that model (19)-(22) is linked in scenarios through the

nonanticipativity constraints (21)-(22). By subjecting these conditions to Lagrangian relaxation, we

form the following Lagrangian

L(x,Υ,k,u)=
∑

ω∈Ω

pω
∑

t

Rtu
ω
t +

∑

ω∈Ω

∑

i

φωi

(

∑

ω′∈Ω

pω
′

Υω′

i −Υω
i

)

+
∑

ω∈Ω

∑

t≤5

ζωt

(

∑

ω′∈Ω

pω
′

kω
′

t − kωt

)

+
∑

ω∈Ω

∑

t≤5

ηωt

(

∑

ω′∈Ω

pω
′

uω
′

t −uωt

)

(39)

whereφωi , ζωt , ηωt are the Lagrange multipliers. With a slight abuse of notation, we letx above denote

all variables other thanΥ,k, andu. A major advantage of the described formulation of the nonantici-

pativity constraints is that when they are relaxed, the Lagrangian (39) can be decomposed by scenarios

for given dual vectorsφ, ζ, andη. Hence, the resulting Lagrangian can be expressed as

L(x,Υ,k,u)=
∑

ω∈Ω

Lω(x
ω,Υω,kω,uω) (40)

The corresponding Lagrangian dual problem for problem (19)-(22) is then

min
φ,ζ,η

{Z(φ,ζ,η)=max{
∑

ω∈Ω

Lω(x
ω,Υω,kω,uω) : (20)} (41)

Problem (41) is a nonsmooth convex minimization problem, and can be solved by subgradient

optimization methods (Hiriart-Urruty and Lemarechal 1993). At each iteration of these methods, the

solution ofZ(φ,ζ,η) is required to obtain a subgradient. We note thatZ(φ,ζ,η) is separable, and

reduces to solving|Ω| problems of manageable size, each of which corresponds to a single scenario.

Components of the subgradient vectorΓ are then given by
∑

ω′∈Ω p
ω′

Υω
i −Υω

i ,
∑

ω′∈Ω p
ω′

kω
′

t − kωt ,

and
∑

ω′∈Ω p
ω′

uω
′

t − uωt whereΥω
i , kωt anduωt are the corresponding optimal solutions to the scenario

subproblems.

We letΓj represent the subgradient at iterationj, and propose a modified subgradient algorithm

consisting of a combined step size rule. More specifically, we use a weighted combination of the

subgradients from previous iterations in updating the dualvariables, such that:

Γ̂j = δ0Γ
j + δ1Γ

j−1+ δ2Γ
j−2 (42)



where theδ terms represent weights withδ0+ δ1+ δ2 = 1. Based on an experimental analysis of con-

vergence rates, as it is the case for most subgradient algorithm implementations, we have determined

that the best choices for these weights for the given problemareδ0 = 0.7, δ1 = δ2 = 0.15.

Multiplier updates are then performed using the following step size rule:

φj+1 = φj −
ϕ(L̄j −Lj)

||Γj||
Γ̂j, ζj+1 = ζj −

ϕ(L̄j −Lj)

||Γj||
Γ̂j , ηj+1 = ηj −

ϕ(L̄j −Lj)

||Γj||
Γ̂j

whereϕ,ϕ< 2, is a constant that can be modified during the algorithm, whileL̄j andLj are upper and

lower bounds on the Lagrangian at iterationj, respectively. The values to be used forϕ were again

determined through experimental analysis. Note that any Lagrangian dual solution is an upperbound

for the original problem, which can be used in evaluating thevalue of a given feasible solution.

Despite the improvements in convergence rates through the parameter settings above, the subgra-

dient algorithm implementation is still not efficient enough for quick evaluations of the large number

of policy environments and input configurations that we haveconsidered as part of our analysis in

this paper. However, further improvement of the solution procedure is possible by establishing the

following result about the structure of the optimal investment decisions for the given piecewise linear

returns functions.

PROPOSITION2. If λnω,∗i represent the optimal values for variablesλnωi , thenλnω,∗i ∈ {0,1} for

all n, i andω, i.e. the optimal investment decision for each technology categoryi corresponds to a

vertex value in the corresponding piecewise linear returnsfunction.

Proof: The result follows from a marginal analysis. Consider equation (16) as defined for each

scenarioω ∈Ω. Given that maximization of the utility in each period implies the maximization of the

net outputyωt for that period, it is optimal to increase investment by∆i units as long asEω[∆
y,ω
i ]≥

κ∆i

5
, where∆y,ω

i is the change in the net output value of scenarioω for a∆i unit increase in investment

for technology categoryi.

By definition, the marginal returns and costs are the same in the rangeΥi ∈ [vni , v
n+1
i ] for all n

due to the linear relationships between investment levels andαωi . Suppose for somei, n andω, 0<

λnω,∗i < 1, i.e. the optimal investment is not a vertex value implying that vni < v̄i < vn+1
i , where

Υ∗
i = v̄i. Assuming without loss of generality that the expected returns are increasing between vertices

n andn + 1, the optimality conditions imply thatEω[∆
y,ω
i ] ≥ κ∆i

5
in the rangeΥi ∈ [vni , v̄i]. On



the other hand, this should also hold for the rangeΥi ∈ [v̄i, v
n+1
i ] due to the constancy of marginal

returns between verticesn andn+1. Hence, it is possible to increase social utility by increasing the

investment level to the value at vertexn + 1, which is a contradiction implying that̄vi can not be

optimal. This would requireλnω,∗i ∈ {0,1} for all n, i andω.�

Hence, it is possible to implement an implicit enumeration procedure for the investment levels at

the vertices of the piecewise linear returns functions and only solve for the optimal abatement policy

at those implicitly enumerated investments levels. Implementation of this procedure improves the

overall solution time as the subgradient iterations are only implemented over the variablesu andk for

given investment levels.



Appendix S13. Allocation of Total Investment under Different Optimal Investment
Values

Investments ($ million) Total Inv
CCS Nuclear Solar ($bil)

Pre C Chem L Post C LWR HTR FR Org Inorg 3rd G

386 56 519 346 3089 15443 830 77 386 21.132
386 56 519 346 3089 0 830 77 0 5.303
154 56 519 346 3089 0 830 77 0 5.071
154 56 519 346 1544 0 0 77 0 2.696

Table S13.1 Allocation of total investment under different optimal investment values.



Appendix S14. R&D and Riskiness of Outcomes
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Figure S14.1 Cumulative distribution function comparing different R&D policies in the Risk 3 DICE Optimal case.

We consider how investment into R&D impacts the riskiness ofthe policy outcomes. Figure S14.1

shows part of three cumulative distribution functions (CDFs). The CDFs are for DICE Optimal under

high risk (Risk 3), comparing no R&D, optimal R&D, and full R&D. The horizontal axis represents

the present value of total costs. Each point on the graph represents the probability that total costs are

less than or equal to the value on the horizontal axis. For example, the probability that the total cost is

less than $170 trillion, given an optimal investment in R&D,is about 0.98. We only show the far right

of the graph, since there is no visual difference between thethree cases on the rest of the graph. Note

that society would prefer to be as far left as possible on thisgraph, and so a higher line is preferred to

a lower line. There is a 5.5% chance that high damages (about 20 times higher than the mean) realize

in the Risk 3 case. If there is no R&D, then damages in this casewill be equal to $194 trillion. With

full or optimal R&D however, damages may be limited, with only about a 2% chance that damages

are greater than $170 trillion. Thus,R&D provides risk reduction(visualized as the area between the

darker and the lighter solid curves).
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