The University of Massachusetts Amherst
University of Massachusetts Amherst

Search Google Appliance


MIE Seminar Series: Soft Robotics: Elasticity by material and geometry


Friday, December 8, 2017 - 12:00pm


Professor Cagdas Onal, WPI


Gunness Student Center, Marcus Hall


Abstract: The overarching objective of our research in the WPI Soft Robotics Laboratory is developing robots that can be commonly used in real-world environments and in close proximity to humans. Towards this objective, we identify two key requirements; elasticity and accessibility. Soft robotic systems inherently satisfy these requirements. Nature harnesses mechanical compliance to find elegant solutions for many problems facing the robotics community. Inspired greatly by biology, we envision future robotic systems to embrace mechanical compliance with bodies composed of soft and hard components as well as integrated electronic and sensory infrastructure. This talk will describe our recent research on theoretical modeling, design, fabrication, actuation, sensing, and control solutions for soft robotic systems.

A soft body offers safety and adaptability, which makes robots more suitable for use in a wide range of applications from human-robot interaction to search and rescue. Our approach to create flexible intelligent machines uses either soft materials or geometric arrangements of otherwise rigid elements.  In the first track, we utilize fluidic actuation of elastomeric materials to generate organic deformations defined by geometry and embedded constraints in the substrate. Despite its advantages, mechanical compliance also violates many inherent assumptions in traditional robotics. Thus, a complete soft robot architecture requires new approaches to utilize accurate theoretical models that capture the nonlinear response of elastomeric materials, proprioception that provides rich sensory information while remaining flexible, and motion control under significant time delay. Our proposed solutions utilize nonlinear material models that predict motion and force output, integrated composite magnetic deformation and force sensing, and feedback control of soft actuation to address each of these issues.

In the second track, we create flexible robotic mechanisms in a cost- and time-effective manner, with the goal of building robots as easily as printing a document. We use common planar fabrication methods to create origami-inspired foldable bodies. Utilizing a hierarchical development process of foldable robotic platforms as combinations of fundamental building blocks, we can achieve arbitrary levels of complexity and functionality. Such designs make extensive use of foldable linkage mechanisms and other kinematic modules, which introduce a set of parameters that can be optimized for relevant task metrics and the crease pattern can be modified accordingly. This new philosophy of robot development offers improved design flexibility, ease of fabrication, cost-effectiveness, and lightweight robotic bodies compared to traditional systems.

In this talk, I will discuss a variety of robots we developed as case studies, to demonstrate each of the new concepts we study towards the realization of complete soft robotic systems.

Bio: Cagdas Onal is an Assistant Professor of Mechanical Engineering and Robotics Engineering at Worcester Polytechnic Institute (WPI), where he is the Director and Founder of WPI Soft Robotics Laboratory and Co-Founder of Human Augmentation Laboratory. Onal is a roboticist with expertise in soft robotic systems, on theoretical modeling, design, fabrication, actuation, sensing, and control solutions for deformable robots. He received his PhD in Mechanical Engineering from Carnegie Mellon University and subsequently worked as a Postdoctoral Associate within the Computer Science and Artificial Intelligence Laboratory (CSAIL) in MIT. He has been an active contributor to the emergence and development of soft robotics through a series of research projects on every aspect of robotic systems comprising pressure-operated elastomeric materials, including power generation, valving, dynamic modeling, control, and algorithmic studies; as well as origami-inspired robots utilizing unique kinematic design and fabrication principles to achieve increasingly accessible flexible robotic systems. Dr. Onal serves in the Editorial Board of Soft Robotics Journal and as an Associate Editor for IEEE’s flagship International Conference on Robotics and Automation (ICRA). He is a co-author of a textbook on nanorobotics, as well as a number of patents and publications in soft robotics research. Onal’s research has been supported by NSF, ONR, as well as private corporations.