Our mission is to advance how humans and robots learn to guide the physical interactive behavior of one another. To achieve this, our research aims to:
Our laboratory studies the interaction between fluid flow and biology, by integrating fluid dynamic engineering, cellular and molecular biology. Body fluids or biofluids, such as blood, lymph, and cerebrospinal fluid continuously interact with cells in the body eliciting biochemical and physical responses. Our research seeks to elucidate the fluid flow characteristics and fluid flow-dependent biomolecular pathways relevant in medicine.
The start of Intelligent Sensing Lab includes three key areas:
1. Machine design (flexible electronics printer and medical device);
2. Control (Sensing, metrology, pattern analysis, feedback control)
3. Machine intelligence (Machine vision, image processing, deep learning)
Nanomaterials are materials with at least one of their three dimensions limited to nanometer, that is, a scale that quantum effects emerge. Two-dimensional (2D) materials is a class of nanomaterials with outstanding electrical, mechanical, chemical, and bio-transducing properties. Using methods based on chemical vapor deposition, 2D materials can be prepared in large scale (~ m) and high quality with tunable strength, transparency, disorder density, and electron transport properties.