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a b s t r a c t 

Siting offshore wind farms is a complex problem due to the wake interactions between wind farms. We 

develop a profit maximizing portfolio model based on underlying network models to track the wake ef- 

fects through a series of wind farms. Our portfolio model optimizes the siting of wind farms considering 

multiple wind directions and wind speeds and performs better than simple decision heuristics. Excluding 

sites from the portfolio has nonlinear impacts on the profitability of the portfolio of sites in that areas ex- 

cluded from consideration have greater impacts on profit if they are grouped together or aligned parallel 

to the prevailing wind direction. The model can be readily adapted to include additional cost factors. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Generating electricity from offshore wind farms can help

coastal regions meet growing electricity demands from renew-

able sources. There are many demands, however, on the offshore

space from recreational, commercial, and conservation uses. This

paper builds an optimization framework to address two challenges

present in planning for siting offshore wind farms: 1) how to plan

for a potentially large number of offshore wind farms in the pres-

ence of wake interactions at the wind farm level, and 2) how to

account for the costs of excluding sites from the choice set for de-

velopment due to competing demands. 

Existing uses can preclude a significant portion of the wind re-

source from wind farm development ( Sheridan, Baker, Pearre, Fire-

stone, & Kempton, 2012 ). The U.S. National Renewable Energy Lab

(NREL) set a target of 86 gigawatts of offshore wind in the U.S.

in their Wind Vision Study ( U.S. Department of Energy, 2014 ). De-

pending on the density of wind turbines, meeting this goal will

require developing about 10% of the currently feasible Federal off-

shore waters off the Atlantic coast ( Schwartz, Heimiller, Haymes, &

Musial, 2010 ). 
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We focus on optimizing the siting of wind farms since, once in-

talled, the location of a wind farm cannot be adjusted, only its op-

ration ( Singh, Baker, & Lackner, 2015 ). A large portion of the costs

elated to offshore wind energy occurs during installation, which

eans that operators want to maximize operating time over the

ife of the facility and avoid unanticipated curtailment or reduction

n efficiency. 

As offshore wind farm development grows, so does the poten-

ial for interactions between individual wind farms, as well as for

umulative environmental impacts to the surrounding ecosystems.

hile individual wind farms generally have negligible population

evel impacts to the surrounding ecosystems, hundreds of wind

arms could result in an accumulation of impacts larger than the

um of the individual impacts ( Berkenhagen et al., 2010 ). Large

cale wind farm development could lead to tipping points such as

umulative collision mortality rates which reduce a species’ long

un population or habitat fragmentation caused by wind farms act-

ng as a barrier to movement between essential habitats ( Drewitt

 Langston, 2006; Hüppop, Dierschke, Exo, Fredrich, & Hill, 2006 ).

ue to the non-linear interactions among wind farm sites in power

eneration and cumulative environmental impacts, examination of

acility siting policies on a larger scale can illuminate improved

athways for large-scale wind farm development. The alternative –

onsidering wind farm siting as a series of independent decisions –

annot properly address the long-term, interdependent nature of

hese decisions and could result in suboptimal wind farm develop-

ent with regard to one or more of the objectives. Developing a
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uantitative understanding of how these interactions develop can

id stakeholders in planning for long term renewable energy tar-

ets and environmental conservation goals. Thus, we argue that

he problem of wind farm siting should be framed as a portfolio

roblem, evaluating multiple sites simultaneously. 

In this context, we address this problem by developing a top-

own optimization model that maximizes the economic value of

 portfolio of offshore wind farms while respecting environmental

onstraints. We use a portfolio approach to examine a set of po-

ential offshore wind farm locations collectively instead of individ-

ally, and use this model to examine the tradeoffs between eco-

omic and environmental outcomes in this spatial multi-criteria

roblem. 

This research differs in two key ways from previous research.

irst, we focus on siting multi-turbine wind farms, rather than the

ayout of individual turbines within farms. The wind farm unit is

he appropriate unit for a social planner to consider. Existing mod-

ls of turbine layout are far too computationally complex to be

ractable on the order we are considering if each turbine is mod-

led individually. On the other hand, wind farms cannot be cor-

ectly modeled as single large turbines of equivalent capacity, since

he wake resulting from a wind farm is larger and more spread out.

herefore, existing turbine layout models cannot be easily adapted

o site wind farms. 

Second, we develop a novel modeling approach for capturing

he spatial interactions of the offshore wind resource. This ap-

roach is based on using linear network models to track how the

ocation-specific wind speeds develop as the wind travels through

 combination (i.e. a portfolio) of wind farms. By using these net-

orks for all wind scenarios (i.e., free wind speed and direction),

e obtain a linear programming formulation for the power gen-

rated by an arbitrary portfolio of farms. Moreover, the linearity

f the model is preserved when the wind farms to be developed

re treated as decision variables. Thus efficient mixed-integer lin-

ar programming (MILP) algorithms can be used to identify a port-

olio of wind farms that maximizes economic value while satisfy-

ng relevant environmental constraints. 

The vast majority of the literature focuses on project developers

nd prescribes the precise location and arrangement of individual

ind turbines within farms, what is called micro-siting. This work

ypically focuses on maximizing power output for a fixed number

f turbines. Due to the complexities of fluid flow within a wind

arm, virtually all micro-siting models use heuristic approaches to

ptimize turbine placement ( Elkinton, Manwell, & McGowan, 2008;

ackner & Elkinton, 2007; Veeramachaneni, Wagner, O’Reilly, &

eumann, 2012 ; see González, Payán, Santos, & González-Longatt,

014 for a review). Recent work using swarm optimization and

enetic algorithms provides additional value in micro-siting prob-

ems by removing the requirement to site turbines on a grid ( Wan,

ang, Yang, Gu, & Zhang, 2012 ). 

Our work, in contrast, is aimed at regulators and policy-makers,

nd is intended to inform strategic policy and regulatory decisions

elated to defining wind energy areas and permitting individual

ind farms. This aim has important implications for the model-

ng choices made in this paper. First, the spatial units of analy-

is used by the U.S. Federal regulatory agencies are gridded points

nown as blocks or aliquots (we call them sites). Hence, for each

f these sites we consider the binary decision of whether or not

 wind farm should be developed, rather than treating the coordi-

ates of each wind farm as continuous decision variables. Second,

aking informed policy decisions requires an equitable treatment

f all available decision alternatives. Indeed, our model can be

olved with exact MILP algorithms to identify the true global opti-

al solution among all feasible ones. Heuristics, in turn, would of-

er no guarantees that the produced solution is the true optimum.

n principle, existing simulation models could be used to evalu-
te the economic values of each possible site combination. How-

ver, as the number of combinations increases exponentially in the

umber of sites, this approach quickly becomes infeasible: For in-

tance, with a relatively modest grid consisting of 10 × 10 sites, the

umber of combinations to simulate would be in the magnitude of

 

100 ≈ 10 30 . 

A few papers have developed mixed-integer linear programs

MILPs) maximizing power in packing-type problems ( Archer,

ates, Donovan, & Waterer, 2011 ; Fischetti & Monaci, 2016 ; Turner,

omero, Zhang, Amon, & Chan, 2014 ; Zhang, Romero, Beck, &

mon, 2014 ). Fischetti and Monaci (2016) consider the context of a

arge offshore wind farm and combine heuristics with a MILP for-

ulation. Our approach diverges from this previous optimization

ork as well as from that of Volker, Hahmann, Badger, and Jor-

ensen (2017) by focusing not on maximizing power output, but

n maximizing the profitability of the wind farms. An increase in

ower output must be evaluated against the additional capital in-

estment required. 

Others have taken a portfolio approach to planning wind farms

ith agents responding to a market for electricity ( Le Cadre, Pa-

avasiliou, & Smeers, 2015 ). Our approach differs in informing

he extensive permitting process that is typical for offshore wind

arms, and focuses on ex-ante spatial concerns rather than ex-post

arket concerns. We take the perspective of the social planner,

ather than the agents producing and selling energy, since plan-

ers and regulators identify development areas for offshore wind

rojects in the U.S. Our paper can be seen as a complement to this

aper. 

We take a novel approach to modeling the spatial interactions

etween discrete wind farm sites in a portfolio decision frame-

ork. The sites are discrete by the nature of the policy. For exam-

le, each wind energy area (WEA) in the U.S. is composed of Fed-

ral lease blocks, which discretize the offshore space designated for

easing. We develop a network model within the optimization to

rack how siting decisions impact power generation at downwind

arms. This allows us to linearize nonlinear relationships for a dis-

retized space and solve large problems quickly. It incorporates the

ariability in wind by modeling the frequency over a set of wind

cenarios with different wind speeds and wind directions ( Baker &

olak, 2011; Liesio & Salo, 2012; Liesio ,̈ Mild, & Salo, 2008 ). The

odel is computationally attractive because it is a MILP model

hich can be readily solved for problem sizes relevant to practi-

al problems. 

This paper also contributes to the Portfolio Decision Analysis

PDA) literature. Specifically, PDA refers to the theory, methods and

ractices which seek to help decision makers make informed mul-

iple selections from a discrete set of alternatives (for an overview

ee, e.g., Salo, Keisler, & Morton, 2011 ). Indeed, the approach de-

eloped here demonstrates how complex spatial interactions and

ncertainties can be efficiently captured in a portfolio model of

ractical relevance. In line with PDA literature, we use the term

portfolio’ to refer to a combination of decisions on whether or

ot a wind farm is developed on each site. It is worth highlighting

hat financial portfolio models (e.g., Markowitz, 1952 ) which seek

o balance return and risks through diversification have a different

urpose: In these models, portfolio refers to the allocation among

ifferent (market traded) financial assets. 

The remainder of this paper is organized as follows.

ection 2 develops the model for optimizing the arrangement

f wind farms. Section 3 presents an application using wind

ata from the Gulf of Maine and explores the effect of re-

tricting environmental corridors from wind farm development.

ection 4 shows how the model can be extended to capture wind

ynamics through a more precise model. Section 5 discusses

he insights that the model can provide for public officials re-

ponsible for reviewing offshore wind farm permit applications
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as well as for energy companies that plan and develop wind

farms. 

2. Model for optimizing the portfolio of wind farms 

We start by establishing the notation and defining the objec-

tive function in Section 2.1 . Section 2.2 describes the network

for modeling the power generation and the profits of the wind

farms. The environmental objective and constraints are described

in Section 2.3 . Finally, the full model is presented in Section 2.4 . 

2.1. Notation 

The model is designed to select optimal locations for wind

farms within a region. The possible locations for building wind

farms are identified by grid points ( x, y ) ∈ G = { 1 , 2 , . . . , ̄x } ×
{ 1 , 2 , . . . , ̄y } where (1,1) is the lower left corner of the grid and pa-

rameters x̄ and ȳ define the size of the grid. The wind farm port-

folio is represented by Z, an x̄ by ȳ matrix with binary elements:

z x,y = 1 if a wind farm is built at coordinates ( x, y ) and 0 other-

wise. 

The model includes a set of eight network models designed

to capture wind directions over bins of 45 ° angles each, centered

around the direction a ∈ A . Each network aggregates the behav-

ior of nine 5 ° wind direction bins (Appendix A). For each direc-

tion a ∈ A , there is a set of scenarios ω ∈ �a defined by u 0 (ω) , the

free stream wind speed from the direction in scenario ω, and the

corresponding frequency of a particular wind scenario, denoted by

f (ω) ∈ [ 0 , 1 ] . These frequencies sum to one: 
∑ 

ω∈ �
f (ω) = 1 where

� = ∪ a ∈ A �a denotes the set of all wind scenarios across all direc-

tions. For instance, ω ∈ �le f t such that u 0 (ω) = 8 and f (ω) = 0 . 2

would correspond to a wind scenario with eight meters per second

wind coming from the left side of an area, which occurs 20% of the

time. 

Let P ( ω, Z ) capture the power output generated by wind farms

under wind scenario ω ∈ �a . The total expected power output over

all wind scenarios (i.e. speeds and directions) is then 

P̄ ( Z ) = 

∑ 

a ∈ A 

∑ 

ω∈ �a 

f ( ω ) P ( ω, Z ) (1)

Assuming that the power function P is known, the economically

optimal wind farm portfolio can be identified by solving the mixed

integer programming problem 

max 
Z 

( 

Rhυ P̄ ( Z ) −
∑ 

( x,y ) ∈ G 
C x,y z x,y 

) 

, (2)

which maximizes the total profits from the portfolio of wind farms.

Specifically, in Problem ( 2 ) the parameter R is the revenue rate for

energy in dollars per kilowatthour and h is the operating hours

per year. Power P̄ multiplied by hours h gives the average annual

energy produced by the wind farm, which is measured in kilo-

watthours. This is then multiplied by a present value factor, υ ,

defined as υ = ( ( 1 + r ) m − 1 ) / ( r ( 1 + r ) m ) where r is the discount

rate, and m is the lifetime of the wind farm in years. The overnight

capital cost 1 for a wind farm at coordinates ( x, y ) in U.S. dollars is

represented by C x,y . 

2.2. Capturing wake effects with a network-flow model 

Developing a wind farm at a particular site reduces the wind

speed and available power at the next downwind site, while an
1 Overnight capital cost refers to the sum of project construction costs without 

interest, i.e. if it were possible to build it “overnight” ( U.S. Energy Information Ad- 

ministration, 2013 ). 

 

 

ndeveloped site allows for the wind to rebound (but never above

he initial free stream value). A network-flow model captures the

onlinear interdependency between power output, wind speed,

nd the location of wind farms. Section 2.2.1 briefly describes the

ake decay functions used to establish the power output lev-

ls in the network model. Section 2.2.2 develops the model for

he power output P ( ω, Z ) in a scenario with wind from the left

ide of the area, i.e. ω ∈ �le f t , where left could represent west or

nother direction depending on how the area of interest is ori-

nted relative to the directions. The same model can apply to the

ther wind directions with only minor modifications as discussed

n Section 2.2.3 . Section 2.2.4 discusses extensions to account for

ind along the diagonal directions. 

.2.1. Wake decay functions 

To parameterize the model, we need to establish power output

evels in the model. We consider two different wind speed decay

unctions which represent different meteorological conditions that

esult in greater or lesser interactions between wind farms through

ake effects. Let d represent the size of the windfarm, specifically

n terms of the distance between the first and last row of tur-

ines. Then, the wind speed exiting a farm of size d is given by

 (d) = u o β(d) , where the decay factor β(d) takes one of the two

unctional forms 

( d ) = d −γ , (3)

( d ) = e −αd . (4)

Parameters γ and α correspond to the function for wind speed

hrough the wind farms with low (high) decay (see Appendix A for

ore detail). These functions fit published wake data for a large

ffshore wind farm ( Barthelmie et al., 2009 ), but have different im-

lications for larger areas. The goal of these functions is to simply

nd appropriately model the interactions between wind farms in

erms of power output. They are in line with the results of Volker

t al. (2017) , which were derived using more complicated wind

ow simulations. The form of the wake model has no impact on

he structure of our model. It is only used to assign wind resource

alues to the levels in the network model ( Fig. 1 ). 

.2.2. The power output function for one wind scenario 

Let ω ∈ �le f t be a wind scenario with free stream wind speed

 0 (ω) and y ∈ { 1 , . . . , ̄y } be a row coordinate. Furthermore, as-

ume that a wind farm reduces the wind speed by a factor

f β(d) . Then the wind speed at any of the coordinate points

( 1 , y ) , . . . , ( ̄x , y ) is an element of the vector ( u 1 (ω) , . . . , u x̄ (ω) ) =
 0 (ω) ∗ ( 1 , β(d) , β( 2 d ) , . . . , β( ( ̄x − 1 ) d ) ) . Note that we use i =
 , . . . , ̄x as indices for the wind speed vectors u i (ω) , since there

re exactly x̄ possible wind speeds in the row of sites. An undevel-

ped site allows the wind speed to rebound from u i (ω) to u i −1 (ω)

t the next site. Let ρi (ω) represent the power generated by an in-

ividual wind farm given wind speed u i (ω) ; and then any site de-

eloped in coordinate points ( 1 , y ) , . . . ( ̄x , y ) generates power equal

o an element of the vector ( ρ1 (ω) , . . . , ρx̄ (ω) ) . 

To determine which of these elements corresponds to the ac-

ual power output at a specific site requires knowledge of (i) the

ncoming wind speed distribution and (ii) whether or not a wind

arm is built. For this purpose, define binary variables θ+ 
ji 
( ω, y ) and

−
ji 
( ω, y ) where j = { 1 , . . . , ̄x } represents sites (within row y ) and

 ∈ { 1 , . . . , j } represents the element of the wind speed vector: 

• θ+ 
ji 
( ω, y ) = 1 if the wind speed is u i (ω) and site j is undevel-

oped; and 0 otherwise; 
• θ−

ji 
( ω, y ) = 1 if the wind speed is u i (ω) and site j is developed;
and 0 otherwise. 
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Fig. 1. Network flow model for the wind. Bolded arrows indicate variables such that θ ji ( ω, y ) = 1 given decision variable values z : ,y = ( 1 , 0 , 1 , 1 , 0 ) . The wind speed distri- 

butions at the five sites are u 1 , u 2 , u 1 , u 2 , u 3 and hence the total power output (1) is equal to ρ1 + 0 + ρ1 + ρ2 + 0 . 
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These variables can be interpreted as network flow variables of

he binomial lattice illustrated in Fig. 1 . When θ+ 
ji 

= 1 this implies

hat the wind speed in site j + 1 , is increased or stays unabated;

hen θ−
ji 

= 1 this implies that the wind speed in site j + 1 is de-

reased. When they are both zero, this implies that the wind speed

ntering site j is not equal to u i (ω) . 

The sum of the initial binary variables must be one: that is, the

ind leaving the first site must be either equal to the free stream

ind or equal to u 2 (ω) , i.e. 

+ 
11 ( ω, y ) + θ−

11 ( ω, y ) = 1 . (5) 

Furthermore, we need to ensure that the flow into each node

quals the flow out of the node, implemented by the following

onstraints 

+ 
11 ( ω, y ) = θ+ 

21 ( ω, y ) + θ−
21 ( ω, y ) (6) 

+ 
j−1 , 1 ( ω, y ) + θ+ 

j−1 , 2 ( ω, y ) = θ+ 
j, 1 ( ω, y ) + θ−

j, 1 ( ω, y ) ∀ j = 3 , . . . , ̄x 

(7) 

+ 
j−1 ,i +1 ( ω, y ) + θ−

j−1 ,i −1 ( ω, y ) = θ+ 
j,i ( ω, y ) + θ−

j,i ( ω, y ) 

∀ j = 4 , . . . , ̄x , i = 2 , . . . , j − 2 

(8) 

−
j −1 , j −1 ( ω, y ) = θ+ 

j, j ( ω, y ) + θ−
j, j ( ω, y ) ∀ j = 2 , . . . , ̄x (9)

−
j −1 , j −2 ( ω, y ) = θ+ 

j, j−1 ( ω, y ) + θ−
j, j−1 ( ω, y ) ∀ j = 3 , . . . , ̄x . (10)

Constraints ( 6 ) and ( 7 ) ensure a network structure that does not

ermit the wind speed to rebound above the original free stream

alue. Finally, we link the route through the network to the de-

ision of whether or not a site will contain a wind farm via the
−
ji 
( ω, y ) variables: 

 j,y = 

j ∑ 

i =1 

θ−
ji ( ω, y ) ∀ j = 1 , . . . , ̄x . (11)
If any one of these θ−
ji 
( ω, y ) variables equals one, then site j

as a wind farm and we can generate power from grid point ( j, y ) .

hen z j,y = 1 , site ( j, y ) can produce ρi (ω) , the power associated

ith the i value of the variable θ−
ji 
( ω, y ) which equals one. Oth-

rwise, z j,y = 0 and the site cannot produce power. Hence, total

ower from the row of sites z 1 ,y , . . . , z x̄ ,y can be obtained as the

um 

x̄ 
 

j=1 

j ∑ 

i =1 

θ−
ji ( ω, y ) ρi ( ω ) . 

Fig. 1 shows an example of how the Z and P variables are linked

o the flow variables θ ji ( ω, y ) when wind farms are built on the

rst, third and fourth sites a specific row. The same model can be

epeated for each row, y , with each parallel set of sites having a

istinct set of variables θ+ 
ji 
( ω, y ) and θ−

ji 
( ω, y ) . The total power un-

er wind scenario ω ∈ �le f t is then obtained from 

 ( ω, Z ) = 

ȳ ∑ 

y =1 

x̄ ∑ 

j=1 

j ∑ 

i =1 

θ−
ji ( ω, y ) ρi ( ω ) . (12) 

.2.3. The power output functions for other wind scenarios 

For a wind scenario ω ∈ �top , the power produced by a column

f sites in grid points ( x, ̄y ) , . . . , ( x, 1 ) the model for power out-

ut is almost identical to ( 12 ). The only difference is that since

he binary variables θ+ 
ji 
( ω, x ) and θ−

ji 
( ω, x ) , i ∈ { 1 , . . . , j } capture

he wind speed changes to the j:th site downwind , they must be

inked to the decision variables indicating whether or not to de-

elop the site at grid point ( x, ̄y + 1 − j ) . Hence 

 x, ̄y +1 − j = 

j ∑ 

i =1 

θ−
ji ( ω, x ) , ∀ j = 1 , . . . , ȳ (13)

eplaces constraint ( 11 ). These are identical except that y in ( 11 ) is

eplaced with x in ( 13 ) and the indices i and j index rows rather
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than columns. The power output becomes 

P ( ω, Z ) = 

x̄ ∑ 

x =1 

ȳ ∑ 

j=1 

j ∑ 

i =1 

θ−
ji ( ω, x ) ρi ( ω ) (14)

For a wind scenario ω ∈ �right or ω ∈ �bottom , the corresponding

equations for the decision variables are, respectively, 

z x̄ +1 − j,y = 

j ∑ 

i =1 

θ−
ji ( ω, y ) , ∀ j = 1 , . . . , ̄x 

z x, j = 

j ∑ 

i =1 

θ−
ji ( ω, x ) , ∀ j = 1 , . . . , ȳ 

The power output functions for the scenarios are the same as

( 12 ) and ( 14 ), respectively. 

2.2.4. Modeling diagonal wind directions 

We model the diagonal wind directions similar to the wind di-

rections above except that there are three upwind farms which can

impact a downwind farm. Each upwind neighbor can contribute

one third of a level of decay to their diagonal downwind neighbor.

As above, each site is represented with a set of nodes and each

node has only two arcs extending from it, indicating the decision

to build or not to build a wind farm. Unlike the networks for the

non-diagonal wind directions, rebound can occur only through the

primary diagonal sites (defined in Appendix B) and not through

the secondary diagonal sites which can contribute to the decay. If

a primary diagonal site is left open, a full level of rebound occurs.

Furthermore, only the arcs associated with building wind farms in

the primary diagonal sites have nonzero profit values. The modifi-

cations to describe power output along the diagonals is described

in Appendix B. 

2.3. Including environmental objectives 

The environmental objectives for siting wind farms can include

maximizing the distance of the facilities from sensitive habitats,

such as nesting and breeding sites, and maximizing the contin-

uous area of open space around the wind farms, i.e. minimizing

the fragmentation of sensitive habitat areas. In this paper we take

a simple approach to this objective by restricting certain sets of

sites from wind farm development. Restricting the columns of sites

with indices in the set m x = ( ( x, 1 ) , . . . , ( x, ̄y ) ) , x ∈ { 1 , . . . , ̄x } re-

quires introducing the additional constraints 

z x,y = 0 , ∀ x ∈ m x . (15)

We use a similar constraint if we want to restrict rows of sites.

These constraints can represent important ecological corridors,

for example the shortest paths between nesting and feeding areas.

We use these constraints to investigate the tradeoffs between value

for energy production and different strategies for ecologically sen-

sitive wind farm development. 

Another approach to limiting environmental impacts in areas of

highly sensitive ecological activity, is to limit the total number of

projects in a sensitive area. This can be implemented by introduc-

ing the constraint 

x̄ ∑ 

x =1 

ȳ ∑ 

y =1 

z x,y ≤ N̄ (16)

where N̄ denotes the maximum number of wind farms. As the per-

mitted density of wind farms decreases, the need for quantitative

modeling decreases because the available wind farm sites become

few and their interactions much less significant. 
.4. The complete model 

Substituting the power output functions P ( ω, Z ) developed

bove in Eqs. (12) and ( 14 ) into the original model for profit

aximization, results in the following mixed integer programming

odel 

max 
∈ { 0 , 1 } x̄ ×ȳ 

( 

Rhυ P̄ ( Z ) −
∑ 

( x,y ) ∈ G 
C x,y z x,y 

) 

 ̄( Z ) = 

∑ 

a ∈ A 

∑ 

ω∈ �a 

f ( ω ) P ( ω, Z ) , where 

 x,y = 0 , x ∈ m x 

 x,y = 0 , y ∈ m y 

x̄ 
 

x =1 

ȳ ∑ 

y =1 

z x,y ≤ N̄ (17)

. Application to Gulf of Maine 

In this section, the model developed in Section 2 is applied to

xamine the optimal siting of wind farms in a 10 × 10 grid of

ossible sites in the Gulf of Maine. Located off the North Atlantic

oast of the United States, the Gulf of Maine has been considered

y developers for installing offshore wind farms. 

.1. Data for portfolio model 

.1.1. Wind data 

The Gulf of Maine has a nearby data buoy maintained by the

ational Oceanic and Atmospheric Administration (NOAA) with

any years of wind data available, of which we use 1994 through

014 data ( National Data Buoy Center, 2015 ). We use the power

aw to extrapolate the hub height wind speeds from the buoy data

 Manwell, McGowan, & Rogers, 2009; Schwartz et al., 2010 ). Fig. 2

hows the distribution of wind speeds for each direction at a hub

eight of 90 meters. The length of the cone in each direction in-

icates the frequency of each direction, for example, there’s an al-

ost 18% chance of wind from the SW. Within each direction, the

oloring indicates the cumulative frequency of wind speeds, for ex-

mple, there’s a 9% chance that wind will come from the NE at less

han 20 meters per second. 

A power curve defines the relationship between wind speed

nd power output for a particular type of wind turbine, as shown

n Fig. 3 . The turbine operates at wind speeds above the cut-in

peed and below the cut-out speed. Power out increases cubically

ith the wind speed until the rated wind speed and power are

eached. Above the rated wind speed, power output remains con-

tant. We take the distributions from Fig. 2 and convert the wind

peeds into power outputs via the power curve. 

At low wind speeds, the revenue generated cannot compen-

ate for the capital costs of development. In these cases, the best

hoice is not to develop any wind farms. At medium wind speeds,

nough revenue is generated to recoup the capital costs; however,

hen wind speeds are in the cubic section of the power curve,

he wind farms are very susceptible to the impacts of wake effects

rom any neighboring farms. At high wind speeds, above the rated

ind speed, the power output is constant, so in these cases the

ind farms are less impacted by wake effects from any neighbors. 

Most areas have a prevailing wind direction, which in the Gulf

f Maine is the southwest, so we orient the grid of sites so that

ne edge faces the southwest direction. The prevailing wind direc-

ion is consistent across the U.S. Atlantic coast and the wind speed

rofile changes very slowly, so we can take this wind speed profile

or a large area such as that considered in this paper with mini-

al error. If the area considered were larger than the coastal area
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Wind Speeds in m/s
WS ≥ 35

30 ≤ WS < 35

25 ≤ WS < 30

20 ≤ WS < 25

15 ≤ WS < 20

10 ≤ WS < 15

5 ≤ WS < 10

0 ≤ WS < 5

Wind Rose

4.5%

9%

13.5%

18%

0%  EW 

N

S

Fig. 2. Wind speed distribution for eight wind directions. There is an almost 18% chance that wind will come from the SW and about half of that time it will be between 5 

and 10 meters per second. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article). 

Fig. 3. Power curve for 5 megawatt reference turbine ( Jonkman et al., 2009 ). https: 

//wind.nrel.gov/forum/wind/viewtopic.php?t=363 . 
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f the state of Maine, some corrections for changes in the wind

peed profile may become necessary. 

.1.2. Wind farm characteristics 

In this application, we use wind farm units of nine 5 megawatt

REL reference turbines ( Jonkman, Butterfield, Musial, & Scott,

009 ) with a ten rotor diameter spacing, for a capacity of 45

egawatts in an area of ≈14.3 square kilometers. To use the MILP

odel in ( 17 ), we define the power outputs ρ1 , . . . , ρn for the pos-

ible wind speed distributions u 1 , . . . , u n as described in Eq. (3) in

he previous section. From the literature discussed in Appendix A,

e estimate γ ≈ 0 . 063 , which results in an 18% reduction after

he first farm for winds approaching perpendicular to the edge of

 wind farm. Using this, we calculate different wind speed levels

ased on the free stream wind speed and use the power curve,

hown in Fig. 3 , to obtain power output levels. 

We estimate the power produced in 5 ° direction bins and ag-

regate them into expected power for the eight directions included

n the model. The expected power of each wind speed distribution,
 1 , is then used as the freestream expected power output, ρ1 , for

he associated wind direction. Based on data available in the litera-

ure, we estimate a decay function for the wind speed as it passes

hrough a series of wind farms ( Barthelmie et al., 2009; Gaumond

t al., 2014; Jime ́nez, Navarro, Palomares, & Dudhia, 2015; Peña,

éthoré, & Rathmann, 2014; Walker et al., 2016 ). More details are

rovided in Appendix A. In order to find the ρ2 values for each di-

ection, each wind speed data point is subjected to the decay func-

ion ( 3 ) and a new wind speed distribution is found for a down-

ind farm, u 2 . Again, the expected power, ρ2 , is found for each

irection. This procedure is repeated until ρn is reached, where

 = max { ̄x , ̄y } . 
Power output is converted to a profit value by calculating the

et present value over twenty years of operation with a social dis-

ount rate of 3%. The revenue calculation assumes a power pur-

hase agreement for 0.20 dollars per kilowatthour and overnight

apital costs of 6230 dollars per kilowatt ( U.S. Energy Information

dministration, 2013 ). For simplicity, we assume uniform capital

osts across all sites; however, in reality the capital costs of sites

ill likely differ though these relationships remain unclear as tech-

ology evolves, and companies and regulatory agencies learn from

arlier U.S. projects. It is straightforward to modify the model pre-

ented here to give each site a different capital cost or to allow

eighboring sites to share cable infrastructure through the network

tructure. 

.2. Computation 

For the wind directions perpendicular to an edge of the area,

ach row or column of sites has 110 network (θ ) variables from

qs. (5) –( 10 ) and 55 constraints. For the wind directions along the

iagonals of the area, a series of different size networks totals

0,672 network variables and 11,632 constraints. The model also

ncludes 100 z-variables, one for each site in the area and each

cenario includes 200 consistency constraints which require the

odel to choose the same sites in each scenario. Thus the model

https://wind.nrel.gov/forum/wind/viewtopic.php?t=363
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Fig. 4. Optimal layout for winds from the southwest direction only (left panels); northwest only (middle panels); and equally distributed from the southwest and southeast 

winds (right panels). The top row assumes low decay (3); the bottom row assumes high decay (4). 
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for a 10 × 10 grid has a total of 4400 + 20 , 672 + 100 = 25 , 172

variables ( θ ’s and z ’s) and a total of 2200 + 11 , 632 + 1400 =
15 , 232 constraints. 

The model was implemented in Matlab and used Gurobi to

solve the MILP problem. The eight wind direction scenario prob-

lem described above takes from seconds to a few days, depending

on the decay function and the constraints placed on the problem.

We consider this quick relative to the planning horizon and life-

time of an offshore wind project, which takes years to plan and has

a lifetime of 20–30 years. The low decay cases solved more quickly

than the high decay cases. Each reference case ( Fig. 5 ) took 1.5 sec-

onds and 37 hours, respectively, on a computer with a quad core

3.40 gigahertz processor with 8 gigabytes of RAM. In both cases,

the maximum run time occurred while solving with a site budget

constraint, almost 4 days for the low decay case and 8 days for the

high decay case. 

3.3. Results 

In this section, we describe the results and present optimal

wind farm layouts under different wind conditions, showing wind

farms as black squares and open space as white squares. The re-

sults show how the different wind speeds and wind directions in-

fluence the placement of wind farms and give a sense of the un-

derlying mechanics of the model and development of the optimal

solution. Subsequent sections discuss results with siting restric-

tions (3.4) and the value of this portfolio approach to siting off-

shore wind farms (3.5). 

When the wind speeds are mostly between the cut-in and rated

wind speeds, as in the case of winds from the southwest, the top

left of Fig. 4 shows the results. This panel shows the optimal ar-

rangement of wind farms if wind only came from the southwest at

the distribution observed for that direction in the data. The wind

farms are arranged such that the wind speeds can rebound be-

tween columns of wind farms, allowing the wind farms to pro-

duce their maximum power all the time. The only exception is the

eighth and tenth columns, which are part of an edge effect that

occurs because there are no sites to consider beyond the tenth col-

umn of sites. The panel below (bottom left) shows the optimal ar-

rangement assuming the higher decay function, holding everything

else constant. The difference between the two shows how the in-
rease in interactions affects the optimal solution – more sites are

eft open (column 8) and the downwind edge effect is smaller. If

he area under consideration were larger, the alternating columns

attern would continue up to the last two columns, which would

xhibit the edge effect. 

In a case where the frequency of wind speeds above the rated

peed is high, such as in the case of winds from the northwest,

e see a higher density of wind farms. The middle panels show

he optimal layout if wind only came from the northwest with the

ind speed distribution observed for the direction given low in-

eractions (top) or high interactions (bottom). In these cases, the

igher wind speeds reduce the interactions between sites in terms

f power and profit, countering the benefits of foregoing wind

arms so more sites are chosen for wind development. At high

ind speeds, the power output of the turbine does not decline

ith the wind speed, so the wakes have less impact on the prof-

tability of the wind farms. 

In the case of wind from the south only (not shown in the fig-

re), the diagonal direction means a larger spacing between the

urbines, and the decay is correspondingly reduced and again all

ind farm sites are chosen. 

In the case of two wind directions with high frequencies of

edium wind speeds, such as in the case of winds from the

outhwest and southeast with equal probabilities, we see how

he alternating rows and columns of wind farms are combined to

orm a checkerboard pattern from the most upwind corner of the

rea through the center of the area (right side panels of Fig. 4 ).

he most downwind corner shows an edge effect as the num-

er of downwind sites becomes very small. Both the southwest

nd southeast wind directions have low frequencies of high wind

peeds, making the overall density of wind farms relatively low. In

ases with higher frequencies of high wind speeds, the density of

ind farms will be higher, the checkerboard patterned area will be

maller and the downwind edge effect will be larger. 

In some cases, the symmetry of the wind conditions and the re-

ults indicate multiple optimal solutions; however, this seems con-

ned to certain cases with high levels of symmetry in wind direc-

ion, wind speed, and probabilities of each. 

Ignoring electrical grid connections and environmental consid-

rations, the optimal wind farm layout for all eight wind direc-

ions using the Gulf of Maine data results in most or all sites de-
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Fig. 5. Wind farm layout results based on eight wind directions with low decay 

(left) and high decay (right) functions. 
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Fig. 7. Impacts of environmental restrictions on total profit values. 
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eloped, depending on the assumptions about the decay function

 Fig. 5 ). Given the high wind speeds seen in the Gulf of Maine, the

osses between sites are insufficient to warrant foregoing any de-

elopment if the interactions between the sites are low, so all sites

re chosen for wind farms (left panel). Assuming higher interac-

ions it is worth foregoing almost one fifth of sites to maximize

he profitability of all sites collectively. In general, an area with a

ower frequency of high wind speeds would have an optimal lay-

ut with a lower density of wind farms. Furthermore, given the

xisting uses of the offshore space, not all sites can be developed.

onsequently, it is important to consider the portfolio of offshore

ind farms with a constraint on the location or number of permit-

ed sites, which we turn to in the next section. 

.4. Ecological restrictions 

If regulators want to restrict certain sets of sites from wind

arm development because, for instance, they are defined as eco-

ogical corridors, our model can assess the impacts of these re-

trictions on the economic value of the sites for offshore wind en-

rgy. As restricted corridors increase or become wider, as shown

n Fig. 6 , the optimal profit value decreases as shown in Fig. 7 . The

osses increase as the number of sites restricted from wind farm

evelopment increases and the losses are slightly higher when the

estricted areas are all adjacent to each other. The losses are higher

or corridors aligned with the prevailing wind direction as opposed

o those perpendicular to the prevailing wind. Aligning corridors

erpendicular to the prevailing wind direction more closely resem-

les the optimal solution in the left most panels of Fig. 4 . 

Restricting sites from wind farm development has a nonpro-

ortional impact on the total value of the sites: making half of

he sites unavailable for wind farm development results in total

alue losses of less than half because the open area leaves wind

esources available to the other sites which are still available for

ind farm development. 
ig. 6. Examples of site restrictions (areas marked with X) for environmental corridor

estricted columns (right). 
.5. Value of the portfolio approach 

To demonstrate the value of the portfolio approach, we compare

he results of our model with those from two heuristics: a no plan-

ing model and a myopic planning model. The no planning model

mplies that there is no social planner; developers choose each

roject only to maximize their own profits. The myopic planning

odel selects the next site based on its own economic value and

ts impact on existing wind farms; this represents a planner who

nly reacts to each new wind farm, rather than planning ahead.

ll three models are solved for a range of values for the number

f permitted sites. 

Both models begin by assessing the economic value of the avail-

ble sites. In the case of the myopic planning model, an additional

tep calculates the total value of all existing sites with each of the

andidate sites. In many cases, both models find multiple maximiz-

ng choices; in these cases, the models choose at random and we

un each model 50 times. The no planning model will continue to

dd wind farms until there are no more positive valued farms. The

yopic planning model adds new wind farms until an additional

ind farm has a net negative economic effect on the portfolio of

ind farms. 

With no external constraint on the percent of permitted sites,

oth the no planning and myopic planning models develop all
s, a corridor with width of three adjacent columns (left) and three nonadjacent 
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Fig. 8. Loss relative to the optimal for the no planning and myopic solutions, as a function of the percentage of sites restricted. The vertical line indicates where the optimal 

solution occurs. 
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sites; however, depending on the percent of permitted sites

these heuristics perform as much as 2–3% worse than the port-

folio model’s optimal solution. In a sensitivity case of greater

interactions, described in Appendix A and C, the lost value can be

as much as 6%. For billion-dollar offshore wind projects, this would

mean hundreds of millions of dollars of lost net present value. 

Fig. 8 shows the losses from the best and worst performance

over 50 runs of the no planning and myopic models under differ-

ent constraints on total development. When sites are severely re-

stricted, either heuristic can match the optimal portfolio value by

selecting new sites which are not adjacent to existing sites. At the

other extreme, if there are no restrictions on sites, then in Gulf of

Maine assuming low interactions, all sites are developed so there

is no value to the portfolio model. 

In between these extremes, however, the portfolio model per-

forms better than the heuristics, by carefully placing wind sites

when adjacent sites are needed. In these cases, under the assump-

tion of low interactions shown in Fig. 8 , the portfolio model im-

proves on the heuristic solutions by at least 1.5–3%. Under the as-

sumption of high interactions, the improvement can be as much

as 6%. For billion-dollar offshore wind projects, this would mean

hundreds of millions of dollars of lost net present value. If offshore

wind energy is going to contribute to the energy system in a signif-

icant way, our model can add value to the long term planning pro-

cess ensuring that both the developers and electricity consumers

get the best possible outcome. 

4. Extensions 

Here we discuss how assumptions about costs, electrical infras-

tructure, the wake model, and the shape and size of the wind

farms and wind area impact the results of the model. 

The model can easily accommodate modifications in the costs

of offshore wind farms in terms of distance from shore and elec-

trical cable costs. Here, we have assumed the same capital costs

across sites, however, sites which are further from shore or in

deeper water may have higher capital costs. The values of C x,y in

Eq. (2) can be modified to reflect anticipated capital costs at dif-

ferent locations. We have held these factors constant for simplicity,

allowing more straightforward explanations of the results of the

model. 
Further, the network structure used for the wake effects be-

ween wind farms could also be used to model cost synergies be-

ween wind farm proximity and electrical infrastructure costs by

dding an additional dimension to the values assigned to each

evel in the network ( Fig. 1 ). Alongside the power output values,

i , we could add the marginal electrical connection cost multiplier,

 i . The vector of multipliers l i would be very similar to the vec-

or of power: l i refers to the multiplier when the farm is the i th

onsecutive farm in a row. The vector of l i parameters is such that

 1 is equal to 1; with each additional neighboring site, the addi-

ional electrical infrastructure costs decrease (i.e. 1 > l 2 > l 3 > . . . )

ecause neighboring sites could share some of the equipment and

he expenses. Space between wind farms would increase the cost

f electrical infrastructure due to the additional cable required and

educed opportunities to share equipment. The first wind farm will

ay the full base cost for electrical infrastructure, but a second

eighboring farm would have a reduced cost multiplied by l 2 . If

hese two sites were not neighboring, then both would pay the full

ase costs. A single wind farm near, but not next to, a big cluster

f farms could also see reduced costs, but not as much as if it were

art of the cluster. The total electrical infrastructure costs L (Z) are

btained in a similar way as the power output values, i.e., 

 ( Z ) = 

1 

2 

x̄ ∑ 

x =1 

ȳ ∑ 

j=1 

s x, j 

j ∑ 

i =1 

θ−
ji 

(
ω 

le f t , x 
)
l i 

+ 

1 

2 

ȳ ∑ 

y =1 

x̄ ∑ 

j=1 

s j,y 

j ∑ 

i =1 

θ−
ji 

(
ω 

bottom , y 
)
l i , (18)

here s x,y is the base electrical infrastructure cost for a single wind

arm at site ( x, y ) , and ω 

le f t ∈ �le f t and ω 

bottom ∈ �bottom are sin-

le scenarios with wind coming from the left or the bottom of the

rea, respectively. Recall that the θ−
ji 

is an indicator of whether a

ind farm is installed in site j with power output indexed by i .

xisting constraints in the model require consistency of the θ−
ji 

ariables across scenarios, so in all the scenarios across a single

irection they will be the same across wind scenarios, thus the

eed for just one scenario from each direction. We sum the elec-

rical costs across all sites and average between the two directions,

rom the left across rows, and from the bottom across columns.

hese two directions will give a satisfactory assessment of wind

arm proximity. 
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The objective function is modified to include these additional

onsiderations as follows: 

max 
∈ { 0 , 1 } x̄ ×ȳ 

( 

Rhυ P̄ ( Z ) − L ( Z ) −
∑ 

( x,y ) ∈ G 
C x,y z x,y 

) 

. (19) 

Thus, the addition of electrical infrastructure costs does not add

ariables or constraints to the model. 

The ratio of the wind speed decay rate to the rebound rate

rives the size of the impact radius of a wind farm and the spacing

etween wind farms in the results. The network model can be ad-

usted to accommodate different relationships between decay and

ebound rates. We assumed a symmetrical, 1:1 relationship be-

ween decay and rebound. If this assumption does not hold, the

etwork described in Section 2.2.2 may require additional rows,

eading to an increase in the number of variables and constraints

or the same size area. 

We modeled wind farms of nine turbines arranged in a 3 × 3

quare area, but the structure and underlying dynamics of the

odel from Section 3.3 would not change for any windfarm layout

r size of the model. Rather it is the total number of sites that is

mportant. We modeled an area with 100 possible sites in a 10 × 10

rid. Adding an additional column or row of sites to the model in-

reases the number of variables in the network ( Section 2.2.2 ) by

¯ and adds 2 ̄x constraints. 

. Discussion and conclusions 

In this paper, we have formulated a model that represents the

omplex spatial relationships between decision variables, in this

ase locations for wind farms, in a tractable way. Our innovation is

o represent the impacts of wind farm development on the wind

esource as a network flow model. This allows us to solve a com-

licated spatial planning optimization problem at realistic scales

ith reasonable computational resources. From this, we can inves-

igate the tradeoffs inherent in siting wind farms as well as the

alue of planning ahead. 

The results of the model can be interpreted in terms of the

ensity of development in different areas, suggesting that planners

ay want to create offshore zones where higher or lower density

ind farm development is permitted. More upwind areas, such as

hose closer to shore in the case of the U.S. Atlantic coast, would be

oned for lower density development. More downwind areas, fur-

her from shore, would be zoned for higher density development. 

This model allows planners to consider the costs (in terms of

ost profit) of excluding areas from offshore wind energy develop-

ent. These costs can be compared with the value of the alter-

ate uses such as fishing, shipping, and conservation. In the con-

ext of high density, large-scale wind farm development, the po-

ential tradeoffs with ecological conservation depend nonlinearly

n the number of sites restricted from potential wind farm devel-

pment and how those sites are oriented to the prevailing wind

irection. The cost increases with the number of sites that are re-

tricted, but this is partially offset by gains in the wind resource

rom undeveloped sites. Migration corridors are most costly when

hey align with the prevailing wind direction. 

As offshore wind farms begin to be built along the U.S. Atlantic

oast, development will most likely begin with the most upwind

ites closest to the shore with a prevailing southwest wind. These

ind farms will have a large impact on any further downwind

arms and regulators should be mindful of this when planning and

ermitting initial offshore wind farms. We have shown that if the

verall wind farm development is small, then a myopic planner

an come very close to optimal wind farm development. However,

chieving high levels of wind farm development efficiently will re-

uire an awareness of how current and future development will
mpact the whole of offshore wind energy development. Given the

hallenges provided by climate change, large scale offshore wind

ay be a realistic future scenario. 
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