GRADUATE STUDENTS HANDBOOK

Department of Mechanical and Industrial Engineering
August 2021
Cover: the winner of the third annual Graduate Gallery Competition (2021)
by Gina Georgadellis (Advisor: Professor Juan Jimenez)

Submissions for the 2022 competition is open. Send your contribution to Ms. Jennifer Blake:
jblake@umass.edu. See Section 10 for details.
Contents

1 WELCOME
2 THE FIRST STEP FOR NEW STUDENTS
3 ACADEMIC HONESTY
4 THE MASTERS PROGRAMS
4.1 Entrance Requirements... 4
4.2 Course Requirements for a Master of Science Degree in Mechanical Engineering 4
4.3 Course Requirements for a Master of Science Degree in Industrial Engineering and Operations Research... 4
4.4 Course Requirements for a Master of Science Degree in Engineering Management 5
4.5 Dual Master in Business Administration and Industrial Engineering and Operations Research or Mechanical Engineering (72 Credits) .. 6
4.6 Thesis Option or Coursework Only Option.. 6
4.6.1 Thesis Option for both ME and IEOR... 6
4.6.2 Master of Science in Mechanical Engineering, Coursework Only Option............. 6
4.6.3 Master of Science in Industrial Engineering & Operations Research, Coursework Only Option ... 6
4.7 Minimum Required GPA... 7
4.8 Academic Dismissal.. 7
4.9 M.S. Thesis.. 7
4.10 Thesis Defense... 7
4.11 M.S. Thesis Timeline.. 8
5 THE PH.D. PROGRAM
5.1 General Requirements.. 10
5.2 Graduate School Residency Requirement ... 10
5.3 Curricular Components for Ph.D. Degree.. 10
5.3.1 Ph.D. in ME.. 10
5.3.2 Ph.D. in IEOR.. 10
5.4 The MIE Ph.D. Qualifying (Preliminary Comprehensive) Exam 11
5.4.1 Format and Scope.. 11
5.4.2 Outcomes... 11
5.5 MIE Ph.D. Dissertation.. 11
5.6 Other Requirements and Procedures applicable to all PhD students........... 12
5.7 Ph.D. Timeline.. 12
6 GENERAL INFORMATION FOR THESIS-OPTION MS AND ALL PHD STUDENTS
6.1 Other Requirements and Procedures... 14
6.2 Role of the Graduate Committees... 14
6.3 Graduate Teaching Assistants... 15
6.4 Graduate Research Assistants... 15
7 DEGREE COMPLETION PROCEDURE
7.1 M.S. Programs... 16
7.2 Ph.D Program.. 16

8 PHD QUALIFYING EXAM
8.1 Exam Timing... 17
8.2 Exam Format .. 17
 8.2.1 Qualifying Exam Format A .. 18
 8.2.2 Qualifying Exam Format B .. 18
 8.2.3 Qualifying Exam Format C .. 18
 8.2.4 Qualifying Exam Format D .. 19

9 DISCRIMINATION AND SEXUAL MISCONDUCT RESOURCES 20

10 MIE GRADUATE GALLERY COMPETITION 21

11 MECHANICAL ENGINEERING GRADUATE SEMINAR COURSE - MIE 697G 22

12 LIST OF COURSES 23
 12.1 Topic Area: Fluid Dynamics and Wind Energy............................ 24
 12.1.1 Fall (Approximate Frequency) 24
 12.1.2 Spring (Approximate Frequency) 24
 12.2 Topic Area: Bioengineering.. 25
 12.2.1 Fall (Approximate Frequency) 25
 12.2.2 Spring (Approximate Frequency) 25
 12.3 Topic Area: Dynamics and Controls.. 26
 12.3.1 Fall (Approximate Frequency) 26
 12.3.2 Spring (Approximate Frequency) 26
 12.4 Topic Area: Materials Engineering.. 27
 12.4.1 Fall (Approximate Frequency) 27
 12.4.2 Spring (Approximate Frequency) 27
 12.5 Topic Area: Manufacturing.. 28
 12.5.1 Fall (Approximate Frequency) 28
 12.5.2 Spring (Approximate Frequency) 28
 12.6 Topic Area: Industrial Engineering and Operations Research 29
 12.6.1 Fall (Approximate Frequency) 29
 12.6.2 Spring (Approximate Frequency) 29
1 WELCOME

We are delighted that you have decided to pursue graduate studies here at the Department of Mechanical and Industrial Engineering at the University of Massachusetts Amherst. We wish you well throughout your program of studies and encourage you to keep in close touch with your advisor and the Graduate Program Director (GPD).

The purpose of this booklet is to provide graduate students and faculty with a source of information about the regulations and policies of the MIE Department regarding its graduate program. This booklet supplements information in the Graduate Catalog and in the “Graduate School Handbook” published by the Graduate School. New students should carefully read all three of these documents. IT IS THE RESPONSIBILITY OF EACH STUDENT TO SEE THAT ALL OF THE GUIDELINES SET BY THE GRADUATE SCHOOL AND THE DEPARTMENT ARE FOLLOWED. Any exception to the policy should be approved in writing by the GPD.

When questions arise which are not answered in this or one of the publications noted, students are requested to first consult with their advisors, then with Mr. Kevin Romani (kromani@umass.edu), the Academic Advisor, and if necessary, with the GPD, and finally, with the Department Head. All members of the faculty, including the GPD and the Department Head welcome questions or comments from graduate students on academic or personal matters.

2 THE FIRST STEP FOR NEW STUDENTS

New students should report to Mr. Kevin Romani (kromani@umass.edu) in the MIE Department Graduate Office (Engineering Lab 208F) for information and instructions. There is a mandatory orientation meeting for all new graduate students in the MIE Department during the first week of classes.

Students should also familiarize themselves with the obligations to acknowledge their sources in all their class and research writing. Academic integrity requires that when we use the ideas or words of previous works, we use footnotes, endnotes, or quotation marks, as appropriate. At UMass, we must abide by the Code of Conduct which explicitly forbids plagiarism.

Professor Yahya Modarres-Sadeghi (10B Gunness Lab, modarres@engin.umass.edu) is the current MIE Graduate Program Director.
Image: A contribution to the Graduate Gallery Competition (2021) by Kaushal Sumaria (Advisor: Professor Leo Liu)
3 ACADEMIC HONESTY

All students MUST read the Academic Honesty Guide for Students: www.umass.edu/honesty

Examples for Plagiarism & Academic Dishonesty
from the “Academic Honesty Guide for Students”:

· Copying 4+ words consecutively without using quotation marks or citing the source
· Summarizing or paraphrasing ideas or opinions without giving credit to the source
· Turning in the same work for more than one course without the consent of both instructors
· Purchasing, downloading, borrowing, reusing or hiring someone to do your work
· Using unauthorized materials or copying from another person during an exam
· Collaborating on work when you have been instructed to work independently
· Facilitating the academic dishonesty of another person

Good practices
from the “Academic Honesty Guide for Students”:

· Read your syllabus carefully
· Ask for help or clarification if you have any questions or concerns
· Be clear on what is acceptable collaboration and what is not
· Do your own work and cite your sources
· Protect your work

Read the complete document here: www.umass.edu/honesty.
4 THE MASTERS PROGRAMS

4.1 Entrance Requirements

M.S. Degree Programs may be entered directly by qualified students with B.S. degrees from any engineering discipline, or materials, physics, or mathematics. Students with degrees in other disciplines should consult the GPD for advice on preparing for graduate courses.

4.2 Course Requirements for a Master of Science Degree in Mechanical Engineering

In addition to the Graduate School requirements stated in the Graduate School Catalog, all M.S. students in the Mechanical Engineering program are required to take a minimum of four (4) Mechanical Engineering courses at the 600 or higher level. Overall at least 21 credits at the 600-level are required. All Graduate Students must register for the ME Graduate Seminar Course: MIE 697G (See Section 11 for details on this course).

4.3 Course Requirements for a Master of Science Degree in Industrial Engineering and Operations Research

The MSIEOR is a 30-credit program. The course-only option consists of 10 courses, whereas the thesis option requires 7 courses and a 9-cr thesis. In addition to the Graduate School requirements stated in the Graduate School Catalog, all M.S. students in the Industrial Engineering and Operations Research Program are required to take the following six courses:

- MIE 620 Linear Programming
- MIE 684 Stochastic Processes in Industrial Engineering
- One course in the Human Factors track
 - MIE 657 Human Factors Design Engineering OR
 - MIE 697RM Research Methods
- One course in Decision Making track
 - MIE 654 or 754 Economic Decision Making for Engineers
 - MIE 686X Multicriteria Decision Making and Analysis
- Any two additional courses out of the following list:
 - Optimization track
 * MIE 532 Network Optimization
 * MIE 597 Optimization and Economics of Electric Power Systems
 * MIE 697SB Simulation-Based Optimization
 * MIE 724 Non-Linear Programming
 * SOM 752 Business Process Optimization
 * SOM 797AE Stochastic Models
 - Human Factors track
 * MIE 657 Human Factors Design Engineering
 * MIE 697RM Research Methods
 - Production track
 * MIE 597SL Supply Chain Logistics
All entering M.S. students who are planning to enroll in the industrial engineering and operations research program are expected to have successfully completed courses in linear algebra and probability and statistics. Entering M.S. students who have not taken a course at the undergraduate level covering these topics must get permission from the instructor of a required course to enroll. The instructor, at his or her discretion, may require that the student take a prerequisite (e.g., linear algebra may be required as a prerequisite for linear programming). This prerequisite will not count for credit towards the graduate program requirements if it is an undergraduate level course. Those students who need make-up courses should expect to take at least one additional semester to complete their graduate degree.

The remaining elective courses can be chosen from that list as well as a large array of courses offered across the university. Course-only students can work on independent studies with faculty for up to 6crs towards the MSIEOR degree. Finally, to complete all graduate school and departmental requirements, at least 21 credits must be within the MIE department and at least 21 credits (i.e., either 7 courses or thesis plus 4 courses) must be at the 600 level or higher. Pass/fail credits will not count towards degree completion.

4.4 Course Requirements for a Master of Science Degree in Engineering Management

The MSEM degree is a 10-course (30-credit) program that is offered both fully online and on-campus. Students can also choose to take some courses on-campus and some online to accommodate their busy schedules and access the full array of courses the university offers. The new flexible curriculum aims to provide both a management perspective and a solid foundation on engineering methods, while allowing students to craft their own curriculum focusing on their interests and career goals.

Flexible Curriculum

Core I – Management Perspective (Choose at least 3)

- Finance and Accounting for Engineers OR Financial and Managerial Accounting
- Strategy-Driven Engineering Innovation
- Technical Project Management
- Engineering Leadership and Entrepreneurship
- Engineering Law and Ethics OR Business Law
- Negotiations

Core II – Engineering Methods (Choose at least 3)

- Human Factors Design
- Principles of Systems Engineering
- Engineering Economic Decision Making
- Network Optimization
- Multiple Criteria Decision Making & Decision Analysis
- Analytics and Statistical Learning Optimization
- Advanced Production Planning

The remaining courses can be chosen from a wide selection of electives. Students are encouraged to take graduate courses on their own engineering field to deepen their technical expertise. In addition, students can do up to 2 courses as a practicum or independent study working with a faculty advisor and potentially an industrial partner. To complete the full program requirements, students must take at least five program courses from the MIE Department, and no more than three courses outside MIE and ISOM. Finally, the department requires 21 credits at the 600 level or higher, and will not count any pass/fail credits towards the degree.

4.5 Dual Master in Business Administration and Industrial Engineering and Operations Research or Mechanical Engineering (72 Credits)

Students in the dual master program must complete the 30 credits required for a Master of Science degree in Industrial Engineering and Operations Research or Mechanical Engineering, as specified above, plus 42 credits in the Isenberg School of Management (36 credits of core MBA course requirements and an industry practicum).

4.6 Thesis Option or Coursework Only Option

Incoming students may choose one of the two options for earning their Master’s of Science in Mechanical Engineering or Master’s of Science in Industrial Engineering and Operations Research: (1) The Thesis option or the (2) Coursework Only option. Students must declare which option they are pursuing when applying to UMass. Students are not generally permitted to switch from one option to the other; they may only switch options with the permission of the MIE Graduate Program Director.

4.6.1 Thesis Option for both ME and IEOR

All M.S. students who choose the Thesis Option are required to plan and carry out a research, design, or development thesis (MIE 699) of nine credits, and 21 course credits.

4.6.2 Master of Science in Mechanical Engineering, Coursework Only Option

The requirements of the Coursework option are:

1. The student must successfully complete at least 30 graduate (500 level or above) credits. Thesis or project credits do not count towards this total.
2. At least 21 credits must be at the 600 level or above.
3. At least 21 credits must be Mechanical and Industrial Engineering courses.
4. A maximum of 6 credits can be for independent study.
5. The student must take at least four of the ME (not IE) courses at the 600-level or higher.

Master’s students who select the coursework option will NOT be considered for assistantships or tuition waivers.
4.6.3 Master of Science in Industrial Engineering & Operations Research, Coursework Only Option

The requirements of the Coursework Only option are:

1. The student must successfully complete at least 30 graduate (500 level or above) credits. Thesis or project credits do not count towards this total.
2. At least 21 credits must be at the 600 level or above.
3. At least 18 credits must be Mechanical and Industrial Engineering courses.
4. A maximum of 6 credits can be for independent study.
5. The student must take the five named IEOR core courses required for the MS Thesis option.

Master’s students who select the Coursework Only option will NOT be considered for assistantships or tuition waivers.

4.7 Minimum Required GPA

The Graduate School requires students to graduate with a cumulative GPA of 3.0 or above.

4.8 Academic Dismissal

According to the Graduate School’s Handbook, “A graduate student who in any two semesters, consecutive or otherwise, has semester averages of below 2.8 is subject to academic dismissal upon recommendation of the Graduate Program Director and approval by the Dean of the Graduate School.”

4.9 M.S. Thesis

An M.S. Thesis may be a research, design or development project. A copy of the Thesis outline must be approved by the student’s committee and put on file with the GPD and forwarded to the Graduate School at least four months prior to the defense. The Thesis guidelines prepared by the Graduate School must be followed. The format for the Thesis must follow the instructions from the Graduate School Catalog and the Graduate School Handbook.

4.10 Thesis Defense

The candidate must defend his or her thesis. This defense is judged by the Thesis Committee. A copy of the thesis must be given to the members of the Committee at least two weeks before the defense. The Thesis committee must be approved in writing by the GPD and the defense schedule must be announced at least 7 days prior to the exam. A notice of the defense shall be sent to all MIE faculty members. IT IS THE RESPONSIBILITY OF THE STUDENT TO INFORM MS. MELINDA DOW ABOUT THE EXACT DATE OF THE DEFENSE AND MAKE SURE THAT THE ANNOUNCEMENT IS SENT TO ALL FACULTY AND GRADUATE STUDENTS IN THE DEPARTMENT AT LEAST 7 DAYS BEFORE THE DEFENSE. IF THIS IS NOT DONE ON TIME, THE DEFENSE WILL BE POSTPONED.
4.11 M.S. Thesis Timeline

The following is the suggested timeline for M.S. Thesis. Some deadlines are firm; others are more flexible.

1. First Semester: Select Permanent Advisor
2. First Semester: Prepare Program of Study
3. End of First Year: Register for Thesis Credit
4. End of First Year: Select Thesis Committee
5. End of Second Year: Complete Required Courses
6. Four Months Prior to Defense: Thesis Outline
7. Set the Date of Defense.
8. Two Weeks Prior to Defense: Deliver Thesis to Committee
9. Seven days before the defense, send an announcement to the faculty and graduate students
Image: A contribution to the Graduate Gallery Competition (2021) by Umang Patel (Advisor: Professor Yahya Modarres-Sadeghi)
5 THE PH.D. PROGRAM

5.1 General Requirements
The Ph.D. program is intended to prepare the student for a research career in industry, academia or national laboratories. A dissertation, presenting significant new information, is the primary requirement of the degree. Other requirements for the Ph.D. degree include:

- A minimum of one academic year in residency. Residency is defined as one continuous academic year of full-time graduate work (9 credits per semester).
- A certification by the candidate’s Guidance Committee that the candidate is qualified to pursue the Ph.D. degree.
- Successful completion of a preliminary comprehensive examination.
- An approved dissertation proposal.
- Completion of an approved course curriculum
- A Ph.D. dissertation.
- A final oral examination.

Additional University requirements are listed in the Graduate School Bulletin.

Students considering a doctoral degree are strongly encouraged to obtain an M.S. degree in Mechanical or Industrial Engineering before attempting to establish candidacy in the Ph.D. program. Although this is not a requirement, experience indicates that previous research experience provides better preparation for Ph.D. dissertation work.

5.2 Graduate School Residency Requirement
“A doctoral candidate must spend the equivalent of at least one continuous academic year of full-time graduate work (nine credits per semester) in residence at the University. The residency year must be either in a Fall/Spring or Spring/Fall sequence. During this year, the student must spend some part of each week physically on campus.”

5.3 Curricular Components for Ph.D. Degree
The minimum course requirement for the Ph.D. degree is enrollment in 18 credits of MIE 899 (Doctoral Dissertation). Ph.D. students must also formulate a complete and coherent program of coursework approved by the student’s Dissertation Committee and the GPD.

5.3.1 Ph.D. in ME
Approved programs must include at least 9 course credits (audited courses do not count) beyond the requirements of M.S. Degree. All of the required courses must be at the 600 level. Students who do not hold a Masters degree will take a total of 30 credits which include the 9 PhD course credits.

5.3.2 Ph.D. in IEOR
Approved programs must include courses which have covered the material equivalent to that covered in the six required courses for the M.S. degree in I.E.O.R. Normally, students receiving a master’s degree in IE will have completed all required courses. To get program approval, all PhD students must draft a program proposal in consultation with the faculty adviser, who will get approval by the IE graduate program director. Syllabi and grades received for the courses taken must be provided.
5.4 The MIE Ph.D. Qualifying (Preliminary Comprehensive) Exam

Each Student enrolled in the Ph.D. program must pass a qualifying exam prior to his/her fourth semester as a Ph.D. student. The purpose of the qualifying exam is to ensure that the student is qualified in both knowledge and critical thinking skills to pursue a Ph.D. in his/her intended field of study.

5.4.1 Format and Scope

Refer to Section 8: MIE Qualifying Exam for a complete description of the four possible formats of the qualifying exam. The format of the exam will be established by the candidate’s examining committee and the GPD to test general knowledge and critical thinking skills in the candidate’s intended area of study.

5.4.2 Outcomes

The three possible outcomes of the exam are: Pass, Conditional Pass, and Fail. A Conditional Pass indicates that the examination committee and the GPD have concluded that the student is qualified to pursue a Ph.D., provided that the student improves his/her knowledge and skills in one or more specific areas. In those cases, the examination committee and the GPD will specify a remedial course of action intended to address the weakness identified from the preliminary comprehensive exam. The remediation plan can include, but is not limited to coursework, independent study projects and subsequent focused examination. A grade of Conditional Pass shall be converted to Pass upon successful completion of the remediation plan within the specified time period. Otherwise, Conditional Pass will be automatically converted to Fail.

A student who has failed in his/her first attempt to pass the preliminary comprehensive exam may petition the Graduate Program Committee to retake the exam.

5.5 MIE Ph.D. Dissertation

After successful completion of the Qualifying Exam, the GPD shall recommend to the Dean of the Graduate School the names of at least three members of the graduate faculty to serve as the dissertation committee. The dissertation committee shall consist of at least three members of the graduate faculty including an “outside member” (as defined by the Graduate School) and at least two regular MIE faculty members. While three members would be the minimum required number of committee members, it is highly recommended that the student and the committee chair include more members in the committee.

The Ph.D. candidate submits a dissertation proposal to each member of the dissertation committee. The candidate makes an oral presentation of his/her proposal at a meeting of the dissertation committee, and upon unanimous approval by the committee, a copy of the proposal signed by all members shall be submitted to the Dean of the Graduate School. This copy shall be accompanied by a request for formal appointment of the dissertation committee by the Graduate School. This action must take place at least seven months prior to the final oral examination. It is highly recommended that this is done by the of the second year of Ph.D.

When all members of the dissertation committee have approved a draft of the dissertation, the final oral examination may be scheduled. See the Graduate School Handbook for scheduling regulations. Notice of the final oral examination must be given to all MIE faculty at least seven days prior to the exam.
The final oral examination is primarily, but not necessarily, limited to a dissertation defense. The examination will be conducted by the candidate’s dissertation committee (all members of which must be present). To pass, the candidate must receive the unanimous vote of the dissertation committee. All other graduate faculty members are encouraged to attend, but with non-voting status. Two negative votes shall fail the examination. A single negative vote will result in the degree being held in abeyance pending review and action by the Graduate Council of the Graduate School.

See the Graduate School Handbook for detailed regulations on preparation and submission of the dissertation copies, payments of fees, etc.

5.6 Other Requirements and Procedures applicable to all PhD students

- New Ph.D. students who are not committed through a GRA to a specific faculty member for research will be assigned the GPD as a Temporary Advisor until a Dissertation Committee Chairperson has been determined. Students are urged to begin as soon as possible to explore dissertation research topics with the faculty.
- All ME graduate students must register for the Graduate Seminar Course (697G) and attend the Departmental Seminar Series and M.S./Ph.D. defenses regularly.
- It is expected that Fellowship and Assistantship holders will devote full time to their studies and will not hold other part-time jobs or be simultaneously enrolled in another degree program. Students not supported by the Department or University are required to notify their advisor and the GPD of any part-time employment.
- In addition to other required copies, a final copy of the Dissertation must be given to the Department Head for the Department records.
- IT IS THE RESPONSIBILITY OF THE STUDENT TO INFORM MS. MELINDA DOW ABOUT THE EXACT DATE OF THE DEFENSE AND MAKE SURE THAT THE ANNOUNCEMENT IS SENT TO ALL FACULTY AND GRADUATE STUDENTS IN THE DEPARTMENT AT LEAST 7 DAYS BEFORE THE DEFENSE. IF THIS IS NOT DONE ON TIME, THE DEFENSE WILL BE POSTPONED.

5.7 Ph.D. Timeline

The following is the suggested timeline.

1. First Semester: Select Permanent Advisor
2. First Semester: Prepare Program of Study
3. End of First Year: Register for Dissertation Credits
4. End of First Year: Select Dissertation Committee
5. End of Second Year: Take Comprehensive Exam
6. AT LEAST Seven Months Prior to Defense: Dissertation Outline (2 years after the start for students without MSc, 1.5 years after the start for students with MSc)
7. Notify Graduate Program Office of Defense Date
8. Seven days before the defense, send an announcement to the faculty and graduate students
Image: A contribution to the Graduate Gallery Competition (2021) by Elizabeth Hodges (Advisors: Professor Robert Hyers)
6 GENERAL INFORMATION FOR THESIS-OPTION MS AND ALL PHD STUDENTS

6.1 Other Requirements and Procedures

1. Students must ideally select a permanent thesis advisor before registering for classes for the first time. A student arriving with support in the form of a research assistantship will have his/her project director as his/her thesis committee chairperson and also his/her advisor. Other students with fellowship support or teaching assistantship or non-supported students should find a permanent thesis advisor within two months and in no case later than the end of their first semester. The GPD may act as a temporary advisor for new students who have not yet found a permanent advisor before first time registration. Registration must always have the approval of the student’s advisor.

General information about the faculty and their research interests can be found on the Department’s website.

2. Students are expected to prepare a coherent program of study during the first semester and before pre-registration for the second semester. This program of study should be approved by the student’s advisor in consultation with the members of his/her M.S. committee. Curriculum programs which deviate from requirements specified herein must be approved in writing by the GPD and recorded on the student’s curriculum form. The M.S. Thesis Committee members are selected by the student with advice and approval of the Committee Chairperson and the GPD. The Committees shall consist of three members of the Graduate Faculty, at least two of whom must be regular MIE faculty and at least one of whom must be outside the immediate area of specialization of the thesis. Thesis committee members must agree to serve before they are appointed to the committee.

3. Advisors will normally require that students register for three credits of Thesis in their first or second semester. Teaching Assistants may not register for more than a total of thirteen credits per semester.

4. A copy of a thesis outline must be approved by the student’s committee and must be put on file in the Department office at least four months prior to the Thesis defense. The thesis outline must also be put on file in the Graduate School Office (see the Graduate School Handbook).

5. ASSISTANTSHIP AND FELLOWSHIP HOLDERS ARE NOT PERMITTED TO HOLD OTHER PART-TIME JOBS OR TO BE SIMULTANEOUSLY ENROLLED IN ANOTHER DEGREE PROGRAM WITHOUT THE WRITTEN PERMISSION OF THEIR ACADEMIC ADVISOR AND THE GPD. Students not supported by the Department or University are required to notify their advisors and the GPD of any part-time employment.

6.2 Role of the Graduate Committees

The MIE Graduate Committee, chaired by the GPD, administers all MIE Graduate Degree Programs. Subject to final approval by the Department Head, the Graduate Committee is responsible for all aspects of the graduate programs and approves plans of study, Dissertation Committee appointments, recommendations for degrees, etc. Advisors and Dissertation Committees are subordinate to the Graduate Committee though it is rare that the recommendations of the Advisor and Dissertation Committee are not accepted.
6.3 Graduate Teaching Assistants

Subject to the availability of qualified applicants, all graduate teaching assistantships (GTAs) are offered to Ph.D. students only. Graduate teaching assistantships are offered not only to fulfill immediate departmental needs, but also to advance the degree programs of graduate students and the teaching needs of the Department. Students who have appointments as GTAs will be assigned duties by the Department Head. This work will normally require between 10 and 20 hours of work each week. It is the policy of this Department not to renew teaching assistantships beyond the time period stated in the initial contract. All additional financial support is generally provided by a student’s academic advisor, or through fellowships.

6.4 Graduate Research Assistants

All applicants for admission to the graduate program in MIE are automatically considered for teaching and research assistantships in the Department. Each applicant’s qualifications are first reviewed by the Graduate Committee. The Graduate Committee then submits the application forms for the top candidates for further review by individual faculty members whose interests most closely parallel those of the applicants. The decision to offer a research assistantship is made by individual faculty members and is based upon the availability of funds and the qualifications of each applicant. The stipends received for this work vary with the type of work, the amount of time involved and the availability of funds. These details are normally worked out between the student and his/her advisor, and generally exclude the possibility of the student taking any part-time or full-time consulting jobs.

The topic or program of the GRA work will usually coincide with that of the student’s thesis or dissertation, so the project’s Principal Investigator will automatically assume the role of the student’s advisor as well.

Continuation of the research assistantship is based upon the continued availability of funds and satisfactory performance by the student in both research and course work.

Graduate students who are already in the program and who do not have a research assistantship are encouraged to contact individual faculty members whose interests closely parallel those of the student and inform them of their interests and availability. The decision to offer an assistantship to a student always rests with the faculty member.
For timely completion of degrees, it is essential that all of the Graduate School’s policies and deadlines are followed. The forms need to be completed and those to be submitted to the Graduate School need to have original signatures in black ink. It is important to note that a committee is not official until recommended by the GPD and appointed by the Graduate School. Also of particular importance is to have an approved copy of the thesis/dissertation outline on file with the Graduate school AT LEAST 4 months prior to the MS thesis defense and AT LEAST 7 months prior to the final PhD oral exam. The Graduate School will not allow a defense to be scheduled if the above timeline is not followed.

IT IS THE STUDENT’S RESPONSIBILITY TO SEE THAT ALL MEMOS AND FORMS ARE SENT TO THE DEPARTMENT AND THE GRADUATE SCHOOL.

7.1 M.S. Programs

The student should obtain a Masters Graduation Eligibility Form from the Graduate School’s website at www.umass.edu/gradschool. This form should be completed and submitted to the Graduate Program Office (ELAB 208F) for approval. Note that this form will only be accepted upon approval of the original M.S. Thesis by all committee members.

7.2 Ph.D Program

The procedure parallels the M.S. program above. The Graduate School requires additional forms to be completed by the candidate. These forms can be found at the Graduate School’s website at www.umass.edu/gradschool.
8 PHD QUALIFYING EXAM

Effective for all students entering after 5/31/2016

8.1 Exam Timing

Currently, the MIE Department has three different pathways available for pursuing a PhD degree: direct entry into a PhD program with a bachelor degree, entry into a PhD program with a UMASS MS degree, entry into the PhD program with a non-UMASS MS degree. The timing of the qualifying exam for each of those cases is described in detail below.

1. Direct Entry into the PhD Program - Every full-time student in the Department’s PhD direct admission pathway is required to take the qualifying exam within two calendar years after his or her entry into the program.

2. Entry into the PhD Program with a UMASS MS Degree - Every full-time student in this pathway is required to take the exam within one and a half calendar years after his or her entry into the Ph.D. program.

3. Entry into the PhD Program with a non-UMASS MS degree - Every full-time student in this pathway is required to take the exam within one and a half calendar years after his or her entry into the Ph.D. program.

4. Part-Time Students - Part-time students are advised to take the exam when 18 credits of course work have been completed or within two years after their entry into the PhD program, whichever occurs first.

5. Transferred Students - Occasionally, students who have passed a qualifying exam at a PhD granting institution transfer into the UMASS PhD program. In this case, the students may file a petition to the Graduate Program Director to waive or to defer the qualifying exam. Please note that the petition may or may not be granted.

8.2 Exam Format

Any student who intends to take the exam is required to notify their research advisor. It is the responsibility of student and his or her research advisor to coordinate the administration of the exam. The examination committee will consist of a minimum of three faculty members; with at least two MIE faculty members. No outside member is required on the examination committee; however, faculty members outside of MIE can serve as additional members of the examination committee.

The exam has a written component and an oral component. Details of these components will be decided by the student’s research advisor in consultation with the examination committee.

Although, no standard format is required across all research groups, the following formats have been deemed acceptable. Note that choosing the written component of one qualifying exam format and the oral component of another will also be deemed acceptable.
8.2.1 Qualifying Exam Format A

- Written Component - The written component will last three hours and consist of two or more questions in the student’s declared major interest area. Questions will be designed to be similar in content and difficulty to an exam question given in a 600-level course within the student’s major interest area. The written component may be open or closed book. The examining committee will notify the student as to the written exam format prior to administration of the written exam.

- Oral Component - The oral component consists of one or more open-ended questions related to the student’s chosen major interest area. The oral exam will be given to each student individually and will be taken within the two weeks following the written exam. The student will be granted anywhere from one hour to one week to prepare their response to the exam questions. The oral component of the qualifying exam will be administered by the examining committee and will normally last one hour. The examining committee will notify the student as to the oral exam format prior to administration of the oral exam.

8.2.2 Qualifying Exam Format B

- Written Component - The written component will last three hours and consist of two or more questions in the student’s declared major interest area. Questions will be designed to be similar in content and difficulty to an exam question given in 600-level course within the student’s major interest area. The written component may be open or closed book. The examining committee will notify the student as to the written exam format prior to administration of the written exam.

- Oral Component - The oral component will consist of a research presentation of the student’s research work to the examining committee. The research presentation will last thirty minutes to an hour and include a detailed literature review of previous work, a description of the methodology used in the research, and an overview of the work performed by the student to date. Questions on the student’s research work as well as related areas such as the engineering relevance of the work can be asked by the examination committee. The research presentation will be given within two weeks following the examination committee. The research presentation will be given a week following the submission of the written component.

8.2.3 Qualifying Exam Format C

- Written Component – The student will be given one or more peer-reviewed journal articles in their declared major interest area to read and review. The student will have one to two weeks to read the articles and write a critical review of the articles which analyzes the authors’ methods, results, conclusions, and writing style/clarity. The student will be expected to go beyond the assigned articles to other sources including textbooks and other journal articles to support his or her review. The papers to be supplied will be determined by examining committee in consultation with the student’s research advisor.

- Oral Component - The oral component will consist of an oral presentation of the paper review to the student’s examination committee. The paper review presentation will last thirty minutes to an hour. Questions on the student’s written review and oral presentation as well as other areas related to the assigned paper can be asked by the examination committee. The research presentation will be given a week following the submission of the written component.
8.2.4 Qualifying Exam Format D

• Written Component – The student will be given three or more questions from the student’s declared major interest area. The student will have one to two calendar weeks to complete the questions and provide a detailed written response to his or her examination committee. The questions can range from a hard homework question with a well-defined answer to an open-ended research question.

• Oral Component – In collaboration with the examination committee, the student will prepare a set of approximately twenty questions to be researched and answered by the student in preparation for the oral exam. The questions are intended to be factually based and not additional exam problems to solve. The oral component of the qualifying exam will consist of one or more rounds of questions from the examining committee based either directly on the twenty questions or on an extension of the written exam questions. The oral component of the qualifying exam will normally last one hour.
The Graduate School, the College of Engineering, and the Department of Mechanical and Industrial Engineering are committed to promoting an environment that is free of discrimination and sexual violence. Graduate students who experience harassment, violence or discrimination have many resources available to them and are encouraged to contact either the Graduate Dean’s office or the Dean of Students office for additional information about these resources. Available resources are listed in the following Graduate School page:

https://www.umass.edu/gradschool/node/666
All graduate students at the Department of Mechanical and Industrial Engineering are invited to submit an image or a video that highlights their current research to the Department’s Annual Graduate Gallery Competition. This is a great opportunity for the students to showcase their ongoing research and an occasion to learn about other ongoing research activities in the Department. The winners will receive up cash prizes from the Department Head during a Graduate Students Ceremony.

Still Image Contribution: The still image consists of only one image that highlights the main finding of the graduate student’s research, as opposed to the regular scientific posters, in which several images and several lines of text are normally used. The text also needs to be limited to 75 words only (including the title). The image must have a resolution of at least 400 dpi. The posters will be printed on an 11” by 17” paper.

Video Contributions: A video should be limited to 1 minute. There is no limitation in the number of images or the length of text used in the video contributions.

For both types of contributions, provide the following information separately (not included in the image, but in the body of the email): the contributor(s) name(s), advisor(s) name(s), acknowledgements, and references.

There is no limitation on the number of contributions from each student. Separate contributions, however, should be on separate topics (e.g., two different scientific papers by the contributor). All contributions should be emailed to Ms. Jennifer Blake (jblake@umass.edu). All contributions will be displayed during a ceremony, when the contributors and visitors will discuss their research projects. Judges from the Department as well as from non-Engineering Departments will evaluate the contributions for (i) their ability to communicate scientific ideas, and (ii) esthetic appeal. The winners will be announced and receive their prizes at the end of the ceremony, the exact date of which will be announced during the academic year.
The goal of this seminar is to introduce the graduate students to different cutting edge research projects that are ongoing in the Department and at other Institutions and to promote interdisciplinary research collaboration by encouraging the students to attend the Departmental Seminars and PhD/MS defenses. All MS and PhD students are required to attend at least 4 (4 for Thesis-based MS, 0 for course-work only MS students, and 6 for PhD students) MS/PhD defenses (the proposal defenses do not count) and at least 6 (6 for Thesis-based MS students, 6 for course-work only MS students, and 10 for PhD students) Departmental Seminars during their time in the Department. A sign-up sheet will be distributed during these events, and it will be the responsibility of the students to locate the sign-up sheet in the room and add their names to it. Each student must write only his/her own name to the sheet. After the event, the sign-up sheet will be given to Mr. Kevin Romani, who will record the number of Seminars/Defenses each graduate student has attended. The seminar host (who presents the speaker) or the student who is defending the Thesis and the student’s advisor will be responsible for returning the sign-up sheet to Mr. Romani. This is a required 1-credit non-graded course and the students will receive a SAT (satisfactory) after they have attended the minimum required number of seminars/defenses. Students are encouraged to register during their first semester. This is a one-time registration course. Students may not replace seminars by defenses or vice versa (i.e. attending more seminars than required does not mean that the student does not have to satisfy the minimum required number of Theses). The required numbers are only the minimum number of Seminars and Defenses the students must attend. They are encouraged to attend as many Seminars and defenses as they would like. Every MS and PhD student in Mechanical Engineering must take this course. Only MS students who are in their 3rd or higher year in Academic year 2018-19 and PhD students who are in their 4th or higher year in Academic Year 2018-19 are exempt from taking this course. All the other current graduate students must take the course.
This list consists of both courses that are offered in MIE and courses offered in some other Departments/Colleges across campus.
12.1 Topic Area: Fluid Dynamics and Wind Energy

12.1.1 Fall (Approximate Frequency)

- MIE 551 Thermal Environmental Engineering (every two years)
- MIE 573 Engineering Windpower Systems (every year) and online
- MIE 597DW Dynamics of Waves (every two years)
- MIE 601 Advanced Thermodynamics (every year)
- MIE 603 Advanced Numerical Analysis (every year)
- MIE 607 Advanced Fluid Mechanics (every year)
- MIE 697FS Fluid-Structure Interactions (every two years)
- ChE 633 Transport Process
- CEE 670 Transport Processes in Environmental and Water Resources
- Physics 850 Soft Condensed Matter Physics

12.1.2 Spring (Approximate Frequency)

- MIE 570 Solar and Direct Energy Conversion (every year)
- MIE 604 Computational Fluid Dynamics (every two years)
- MIE 605 Finite Element Analysis (every year)
- MIE 673 Wind Turbine Design (every two years)
- MIE 674 Offshore Wind Energy Systems (every two years)
- MIE 701 Advanced Thermodynamics (every two years)
- MIE 707 Viscous Fluids (every two years)
- MIE 821 Turbulence (every two years)
- CEE 662 Water Resource Systems Analysis
- CEE 561 Open Channel Flow
- CEE 560 Hydrology
- PHYS 553 Optics-With Lab
12.2 Topic Area: Bioengineering

12.2.1 Fall (Approximate Frequency)

- MIE 597MD Practical Medical Device Design (every year)
- MIE 497CM/697CM Connections in Medicine, Biology and Engineering (every year)
- MIE 630 Advanced Solid Mechanics (every year)
- ChE 575 Tissue Engineering (every year)
- MIE 609 Mechanical Behavior of Materials (every year)

12.2.2 Spring (Approximate Frequency)

- MIE 597MB Molecular Cellular and Tissue Biomechanics (every year)
- MIE 597ME/697ME Introduction to MEMS and Microsciences (every two years)
- MIE 605 Finite Element Analysis (every year)
- MIE 697R Biorobotics (every two years)
- MIE 597SM Skeletal & Tissue Biomechanics (every two years)
- ChE 535 Microfluidics and Microscale Analysis in Materials and Biology (every year)
- KIN 535 Muscle Mechanics (every year)
12.3 **Topic Area: Dynamics and Controls**

12.3.1 **Fall (Approximate Frequency)**

- MIE 597DW Dynamics of Waves (every two years)
- MIE 697FS Fluid-Structure Interactions (every two years)
- MIE 697L Nonlinear Dynamics (every two years)
- MIE 697S Simulation-Based Optimization (every two years)
- CEE 615 Probabilistic Methods in Structural Mechanics
- MATH 532H Nonlinear Dynamics and Chaos with Applications
- ECE 580 Feedback Control Systems
- PHYSICS 860C Monte Carlo Techniques

12.3.2 **Spring (Approximate Frequency)**

- MIE 597ST Introduction to MEMS and Microsciences (every two years)
- MIE 605 Introduction to Finite Element Modeling, Analysis, and Applications (every year)
- MIE 641 Advanced Vibrations (every two years)
- MIE 644 Applied Data Analysis (every two years)
- MIE 597G Mechatronics (every two years)
- MIE 597W Adaptive and Nonlinear Control (every two years)
- MIE 697R Biorobotics (every two years)
- CMPSCI 603 Robotics (every year)
- CEE 541 Structural Dynamics
12.4 Topic Area: Materials Engineering

12.4.1 Fall (Approximate Frequency)

- MIE 597E/697E Computational Mater. Science (every year)
- MIE 603 Adv. Numerical Analysis (every two years)
- MIE 605 Introduction to Finite Element Analysis (every year)
- MIE 609 Mechanical Properties of Materials (every year)
- MIE 630 Advanced Solid Mechanics (every year)
- MIE 891CM Computational Materials Science
- ChE 621 Thermodynamics I (every year)
- Polymer 797EM Electron Microscopy (every year)
- Polymer 897F Surface & Interfacial Mechanics (every year)

12.4.2 Spring (Approximate Frequency)

- MIE 5xx Polymer manufacturing (every two years)
- MIE 571 Phys. & Chem. Processing of Mater. (every year)
- MIE 579 Advanced Materials Engineering
- MIE 597MB Molecular, Cellular, & Tissues Biomech. (every two years)
- MIE 597MC Advanced Materials Characterization (every two years)
- MIE 597MM Metamaterials (every two years)
- MIE 597PM Biomimicry (every two years)
- MIE 697B Solidification, Cold Sprays, and Phase Changing Heat Exchange (every two years)
- MIE 697P Optical Engineering & Photonics (every two years)
- ChE 597D Nanostructured Biomaterials (every year)
- ChE 622 Thermodynamics II (every year)
- Phy 558 Solid State Physics (every year)
- Polymer 501 Introduction to PSE (every year)
12.5 Topic Area: Manufacturing

12.5.1 Fall (Approximate Frequency)

- MIE 597/697AM Additive Manufacturing (every two years)
- MIE 597E/697E Computational Mater. Characterization (every year)
- MIE 597DW Dynamics of Waves (every two years)
- MIE 597IM/697IM Intelligent Manufacturing (every two years)
- MIE 601 Advanced Thermodynamics (every year)
- MIE 605 Introduction to Finite Element Analysis (every year)
- MIE 609 Mechanical Properties of Materials (every year)
- MIE 630 Advanced Solid Mechanics (every year)
- MIE 697AM Special Topics- Additive Manufacturing (every two years)
- ECE 597NE Nanoelectronics

12.5.2 Spring (Approximate Frequency)

- MIE 5xx Polymer manufacturing (every two years)
- MIE 579 Advanced Materials Engineering
- MIE 597MC Advanced Materials Characterization (every two years)
- MIE 597PM Biomimicry (every two years)
- MIE 597ST Introduction to MEMS & Microscience (every two years)
- MIE 697B Solidification, Cold Sprays, and Phase Changing Heat Exchange (every two years)
- MIE 697P Optical Engineering & Photonics (every two years)
- MIE 697R Biorobotics (every two years)
- CMPSCI 589 Machine Learning
- CMPSCI 603 Robotics (every year)
- ECE 597TN Photonics
12.6 Topic Area: Industrial Engineering and Operations Research

12.6.1 Fall (Approximate Frequency)

- MIE 620 Linear Programming (every year)
- MIE 657 Human Factors Engineering (every year)
- MIE 697S Simulation-Based Optimization (every two years)
- MIE 697SEI Introduction to Systems Engineering (every year)
- MIE 686 Multiple Criteria Decision Making & Decision Analysis (every three years)
- MIE 724 Nonlinear Programming (every three years)
- MIE 532 Network Optimization (every two years and online)
- SCH-MGMT 752x: Deterministic Models (every year)
- SCH-MGMT 758 Supply Chain Management (every two years)
- SCH-MGMT 797SS Quantitative Analysis in Supply Chain Ops.
- SCH-MGMT 670 Operations Management (every year)

12.6.2 Spring (Approximate Frequency)

- MIE 651 Production Planning I (every two years)
- MIE 697Q Logistics (every year)
- MIE 684 Stochastic Processes in Industrial Engineering (every year)
- MIE 754 Economic Decision Making for Engineers (every year and online)
- STAT 506 Design of Experiments (every year)
- MIE 597 C Operations Research in Healthcare (every two years)
- SCH-MGMT 597LG Humanitarian Logistics and Healthcare (every two years)
- SCH-MGMT 825x Integer Programming (every two years)
- SCH-MGMT 797AE Stochastic Models (every year)
Image: A contribution to the Graduate Gallery Competition (2021) by Mostafa Moire (Advisor: Professor Ashwin Ramasubramaniam)